
Executive Brief: Addressing Security Concerns in
Open Source Components
The Facts, The Issues, and Practical Solutions

Summary:

This executive brief summarizes the findings of an independent and comprehensive security review of the 31 most com-
monly used open source components and provides practical guidance and best practices for addressing security risks.
Material was gathered from analysis conducted by researchers at Aspect Security1 using data from the Central Repository,
the industry’s principal source for open source components, and a global Sonatype survey of 2,550 developers, architects,
and industry experts.2

The analysis revealed widespread security vulnerabilities in
components, creating risk for thousands of organizations
using open source components in their software develop-
ment efforts, including more than half of the Global 100. It
also showed that few organizations take steps to mitigate
risks posed by components that form the foundation of
their most critical applications.

Interviews indicated a widely held view that popular open
source components are of consistently high quality, given
active community review to drive rapid defect resolution.
This view overlooks fundamental ecosystem flaws, most
notably the lack of centralized notification infrastructure
alerting developers to the existence of flaws and the avail-
ability of new versions that correct them.

A single vulnerable component can completely undermine the security of an application, expose valuable data assets,
and jeopardize the integrity of an organization’s software portfolio. The risks are very real, underscored by the growth
and cost of cyber attacks. In 2011, successful cyber attack rates grew by 44% with an average time to resolution of 18
days and average cost of a data breach stands at $5.5 million.3

To ensure the integrity of the software development process, the authors recommend creating an inventory of open
source components in custom applications, establishing controls throughout the development lifecycle, and monitoring
the bill of materials of deployed applications for the discovery of new critical flaws.

Sonatype

The authors are strong advocates of open
source software and are active contribu-
tors to the open source community. To
ensure maximum benefit from its use,
organizations should take steps to mini-
mize risks during software development,
including improvements in awareness,
policy, and enforcement. While our focus
here is on open source software, many of
the issues raised apply to all software.

https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries/

Quantitative Analysis

Modern software relies heavily on open source:
More than 80 per cent of a typical software application is comprised of open source components and frameworks.

The Global 500 is at risk:
Collectively, Global 500 organizations downloaded more than 2.8 million insecure components in one year.

Financial services firms are the most exposed:
Global 100 financial services firms alone downloaded more than 567,000 insecure components in one year.

Many popular components have flaws:
There were more than 46 million downloads of insecure versions of the 31 most popular open source security libraries
and web frameworks. Google Web Toolkit (GWT) was downloaded 17.7 million times with known vulnerabilities. Other
popular vulnerable libraries downloaded included Xerces, Spring MVC, and Struts 1.x.

Users are not update aware:
One in three of the most popular components had older, vulnerable versions still being commonly downloaded, even
when a newer version, with the security fix, was available.

Community scrutiny drives flaw discovery:
Open source security libraries are roughly 20 per cent more likely to have reported security vulnerabilities than other
types of components. This is, at least in part, indicative of the effectiveness of broad community collaboration and
active support.

The data shows that security vulnerabilities in open source libraries and frameworks are widespread.
Yet most organizations do not appear to have a strong process in place for ensuring that the compo-
nents they rely upon are up-to-date and free from known vulnerabilities.

Total Downloads with Known Vulnerabilities (Logarithmic)

Tapest
ry

GW
T

Apach
e

Xerc
es

Sprin
g M

VC

Str
uts

 1
.x

Apach
e

Axi
s

Sprin
g S

ecu
rit

y

Str
uts

2

Bouncy
Cast

leLift

Apach
e

Santu
ario

W
ic

ket

Ja
va

 S
erv

er F
ace

s

AntiS
am

y

Hib
ern

ate

Apach
e

Shiro
Tile

s

Apach
e

CXF

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

Component Security Risks

Components (also referred to as binaries, artifacts, jars, or
libraries) are software modules designed to perform com-
monly required functions including support for business
logic, data access, resource management, communications,
and user interface creation. Today’s applications common-
ly use 30 or more components, which in turn might rely on
dozens or hundreds of other components. As components
run with the full privilege of the application, vulnerability
in any given component can completely undermine the
security of an entire application.

The impact of a component vulnerability often, but not al-
ways, depends on how the library is used by an application.

These Struts2 flaws do not require authentication or special skills to exploit. The following is an ex-

ample exploit for the flaw documented in CVE-2010-1870.

http://example.org/struts2app/myaction?foo=%28%23context[%22xwork.MethodAccessor.

denyMethodExecution%22]%3D+[...],%20%23_memberAccess[%22allowStaticMethodAccess%22]%3

d+[...],%20@java.lang.Runtime@getRuntime%28%29.exec%28%27mkdir%20/tmp/PWND%27%29[...]27

meh%27%29]=true

In this simple example, an exploit executes a ‘mkdir’ command (though, in reality an attacker could

access any data, functionality, or privilege assigned to the application).

Vulnerabilities and Their Consumption is Common

Vulnerabilities are very common among the most popular components and frameworks.

This study revealed:
37% of the 1,261 versions of the 31 components studied contain a known CVE or OSVDB vulnerability.•	 4
26% of downloads of these components were of versions with known CVE or OSVDB vulnerabilities. •	
Popular component versions are only 10% less likely than less popular versions to contain a known vulnerability.•	
Security libraries are roughly 20% more likely to have reported security vulnerabilities than web frameworks. This is •	
likely due to increased security vigilance among these projects. It is probable that other components have vulner-
abilities at similar (or higher) rates that are not yet known or reported.
Often vulnerabilities exist in older versions of a component that have long since been fixed; however, vulnerable ver-•	
sions continue to be commonly used.

Some libraries contain flaws that expose any application
that leverages that library to compromise. A vulnerability
in Struts 2 is an example of such a library.

In the last year, Struts 2 was downloaded over one million
times by more than 18,000 organizations. In 2010, a class
of weakness was discovered that allows attackers to exec-
ute arbitrary code on any Struts 2 web application. Follow-
ing the initial discovery, Google and other researchers,
have unearthed similarly critical flaws.

Complex Dependencies Broaden Exposure, Increase Risk

The challenges facing software developers are compounded by the viral nature of the open source component ecosys-
tem. A single component may be used in dozens or hundreds of others. A flaw in any given component version is effec-
tively inherited by every component that depends on it. For instance, security vulnerability in Spring-beans 2.5.6 affected
1,447 dependent components. When Spring-beans was updated to fix the vulnerability, there was no process for updat-
ing the ecosystem, and hundreds of tainted components remain flawed.

How do you know when a component is updated?

74%

40%
30%

20%

66%
By searching the web

Keeping up with project sites

From colleagues

Word of mouth

Figure 1: 2012 Sonatype survey of 2,550 developers, architects, and managers

Figure 2: A vulnerability in Spring-beans 2.5.6 infected 1,447 other components and
untold thousands of applications

activ
em

q

apache-archiva-1.2

apache-archiva-1.3

appfuse

appspy

camel

codehaus

continuum

cxf

drools
dspace

geronimogeronimo-tomcat6

gshell-1.0-alpha-2

guvnor

ikasanjasigjbehave

kuali

m
u

le

n
h

in
d

o
p

en
jb

p
o

rtals

servicem
ix

sh
iro

sp
rin

g
fram

ew
o

rk
stru

ts
tu

scan
y

1447

Spring-beans-2.5.6
Vulnerability:
CVE-2010-1622
Severity critical

Why would someone use a vulnerable
version when a newer, secure ver-
sion is available? The answer is both
revealing and troubling – the open
source ecosystem both evolves rapidly
and lacks centralized update notifica-
tion infrastructure. Users are simply
unaware that they are using flawed
versions, and no efficient mechanism
exists to alert them.

A recent global survey of 2,550 de-
velopers, architects, and managers
revealed that organizations manage
component updates on an ad-hoc
basis, with no systematic mechanism
for update awareness (see Figure 1).

Recommendations

Given the prevalence of vulnerabilities in commonly used open source components, organizations must take steps to
minimize risks during software development. This includes improvements in awareness, policy, and enforcement. To
lessen the risks associated with using libraries and protect application portfolios, the following actions are recommended:

INVENTORY: Gather information about your current component usage
Track component downloads and usage to understand consumption.•	
Inventory internal component repositories to determine what is being distributed to development teams.•	
Understand the software supply chain to determine what components and dependencies are being introduced to •	
the organization.

ANALYZE: Understand vulnerabilities in applications and repositories
Analyze key applications to uncover known security vulnerabilities.•	
Analyze internal component repositories to discover vulnerable components.•	

Figure 3: Even a simple software application
can have dozens of multi-layered dependen-
cies, which can obscure underlying issues.

Modern software applications are developed with unprecedented speed and
are often incredibly powerful. They are also incredibly complex. Managing
complex dependencies has the potential to yield security benefits. Effective
dependency management processes would enable organizations to keep libr-
aries more up-to-date, raise awareness of security vulnerabilities in libraries
more quickly, and ensure that libraries are maintained in a healthy state.

The key to effective dependency management is dependency awareness.
Survey data indicate that virtually all development organizations are handling
updates to open source libraries on an ad-hoc basis. Compounding the probl-
em, only 32 per cent of organizations maintain an inventory of the components
and dependencies used in their production applications. When a new vulnera-
bility is discovered, it is virtually impossible for these organizations to react in
an appropriate manner to remediate the defect.

48% No

32% Yes, for all components including dependencies

20% Yes, for all components but NOT their dependencies

Does your organization maintain an inventory of open
source components used in production applications?

Figure 4: Only 32% of organizations maintain an inventory of the dependencies in their production applica-
tions, complicating issue resolution when a new vulnerability is discovered.

CONTROL: Establish controls throughout the development lifecycle
Establish policies regarding security, the use of viral licenses, and the out-of-date or out-of-version components.•	
Eliminate or blacklist known vulnerable components in internal repositories.•	
Establish mechanisms to prevent known flawed components from entering the organization.•	
Implement controls in build and continuous integration systems to prevent inclusion of flawed components in soft-•	
ware builds.

MONITOR: Maintain awareness of component updates
Maintain an inventory of all components and dependencies used in production applications.•	
Continuously monitor application bills of materials for updates and newly discovered vulnerabilities.•	

About Sonatype

Sonatype ensures the integrity of the modern software supply chain. Sonatype’s tools and information services improve
visibility and control over component-based software development, enabling collaboration while reducing the risks as-
sociated with security and licensing, and improving overall quality. Sonatype operates the Central Repository, the indus-
try’s primary source for open source components containing over 300,000 components, 200 million classes, and serving
more than 4 billion requests per year from more than 60,000 organizations. Sonatype is a leader in open source projects,
including Nexus, Apache Maven, m2eclipse and Hudson. The company was founded by Jason van Zyl, the creator of
Apache Maven, and is privately held with investments from Accel Partners, Bay Partners, Hummer Winblad Venture Part-
ners, and Morgenthaler Ventures. Visit www.sonatype.com or follow Sonatype on Twitter @SonatypeCM.

About Aspect Security

Founded in 2002, Aspect Security is a consulting firm focused exclusively on application security, ensuring that the
software that drives business is protected against hackers. Aspect’s engineers analyze, test and validate approximately
5,000,000 lines of critical application code every month. Aspect unearths more than 10,000 vulnerabilities every year
across a wide range of technologies and architectures, and the company’s practical recommendations dramatically
improve clients’ security posture. Aspect supports a worldwide clientele with critical applications in the government,
defense, financial, healthcare, services and retail sectors. Aspect Security is a founding member of the Open Web Appli-
cation Security Project (OWASP) and leads widely adopted projects such the OWASP Top Ten, WebGoat, the Application
Security Verification Standard (ASVS), Risk Rating Methodology and Enterprise Security API (ESAPI). For more information,
please visit www.aspectsecurity.com.

1 Aspect Security , The Unfortunate Reality of Insecure Libraries https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries/
2 2012 Sonatype Global Survey of 2,550 developers, architects, and executives. http://www.sonatype.com/people/2012/03/the-results-are-in-sonatype-2012-open-
source-development-survey/
3 Ponemon Institute: Second Annual Cost of Cyber Crime Study -- http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEsQFjAA&url=http
%3A%2F%2Fwww.arcsight.com%2Fcollateral%2Fwhitepapers%2F2011_Cost_of_Cyber_Crime_Study_August.pdf&ei=lKtjT5TGBYPX0QGJ15TjBw&usg=AFQjCNG6mL
q6Iy-i_3ZvfL8s3J_yQXu4XA and U.S. Cost of a Data Breach: http://www.symantec.com/about/news/release/article.jsp?prid=20120320_02&om_ext_cid=biz_socmed_
twitter_facebook_marketwire_linkedin_2012Mar_worldwide__CODB_US
4 CVE, is a dictionary of common vulnerabilities and exposures maintained by the Mitre Corporation -- (http://cve.mitre.org). OSVDB is the Open Source Vulnerability
Database, an independent and open source database created and maintained by and for the community -- http://osvdb.org.

SONATYPE | www.sonatype.com | sales@sonatype.com
+1 301-684-8080 | 12501 Prosperity Drive, Suite 350, Silver Spring, MD, 20904

http://sonatype.com/
https://twitter.com/#!/SonatypeCM
https://www.aspectsecurity.com/
 http://www.aspectsecurity.com
http://sonatype.com/
http://www.sonatype.com/people/2012/03/the-results-are-in-sonatype-2012-open-source-development-survey/
http://www.sonatype.com/people/2012/03/the-results-are-in-sonatype-2012-open-source-development-survey/
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEsQFjAA&url=http%3A%2F%2Fwww.arcsight.com%2Fcollateral%2Fwhitepapers%2F2011_Cost_of_Cyber_Crime_Study_August.pdf&ei=lKtjT5TGBYPX0QGJ15TjBw&usg=AFQjCNG6mLq6Iy-i_3ZvfL8s3J_yQXu4XA
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEsQFjAA&url=http%3A%2F%2Fwww.arcsight.com%2Fcollateral%2Fwhitepapers%2F2011_Cost_of_Cyber_Crime_Study_August.pdf&ei=lKtjT5TGBYPX0QGJ15TjBw&usg=AFQjCNG6mLq6Iy-i_3ZvfL8s3J_yQXu4XA
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEsQFjAA&url=http%3A%2F%2Fwww.arcsight.com%2Fcollateral%2Fwhitepapers%2F2011_Cost_of_Cyber_Crime_Study_August.pdf&ei=lKtjT5TGBYPX0QGJ15TjBw&usg=AFQjCNG6mLq6Iy-i_3ZvfL8s3J_yQXu4XA
http://www.symantec.com/about/news/release/article.jsp?prid=20120320_02&om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Mar_worldwide__CODB_US
http://www.symantec.com/about/news/release/article.jsp?prid=20120320_02&om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Mar_worldwide__CODB_US
http://cve.mitre.org
http://osvdb.org
http://www.sonatype.com
mailto:sales@sonatype.com

