
Asaf Hirshberg
Solution Architect,
Red Hat

ANSIBLE BEST PRACTICES: THE ESSENTIALS

THE ANSIBLE WAY

COMPLEXITY KILLS PRODUCTIVITY.
That's not just a marketing slogan. We really mean it
and believe that. We strive to reduce complexity in
how we've designed Ansible tools and encourage you
to do the same. Strive for simplification in what you
automate.

OPTIMIZE FOR READABILITY.
If done properly, it can be the documentation of your
workflow automation.

THINK DECLARATIVELY.
Ansible is a desired state engine by design. If you're
trying to "write code" in your plays and roles, you're
setting yourself up for failure. Our YAML-based
playbooks were never meant to be for programming.

Treat your Ansible content like code

• Version control your Ansible content

• Iterate
– Start with a basic Playbook and static inventory
– Refactor and modularize later

WORKFLOW

Do it with style

• Create a style guide for your Playbook developers

• Consistency in:
– Tagging
– Whitespace
– Naming of Tasks, Plays, Variables, and Roles
– Directory Layouts

• Enforce the style

WORKFLOW

basic-project/
├── config.yml
├── inventory
│ ├── group_vars
│ ├── host_vars
│ └── hosts
├── provision.yml
└── site.yml

PROJECT LAYOUTS: BASIC

myapp/

├── config.yml
├── provision.yml
├── roles
│ ├── myapp
│ │ ├── tasks
│ │ │ └── main.yml
│ │ └── etc.etc
│ ├── nginx
│ │ └── etc.etc
│ └── proxy
│ └── etc.etc
└── site.yml

PROJECT LAYOUTS: ORGANIZATIONAL ROLES

myapp/
├── config.yml
├── provision.yml
├── roles
│ └── requirements.yml
└── setup.yml

PROJECT LAYOUTS: SHARED ROLES

Give inventory nodes human-meaningful names rather than
IPs or DNS hostnames

10.1.2.75

10.1.5.45

10.1.4.5

10.1.0.40

w14301.acme.com

w17802.acme.com

w19203.acme.com

w19304.acme.com

INVENTORY

db1 ansible_host=10.1.2.75

db2 ansible_host=10.1.5.45

db3 ansible_host=10.1.4.5

db4 ansible_host=10.1.0.40

web1 ansible_host=w14301.acme.com

web2 ansible_host=w17802.acme.com

web3 ansible_host=w19203.acme.com

web4 ansible_host=w19203.acme.com

Group hosts for easier inventory selection and less
conditional tasks -- the more the better

[db]
db[1:4]

[web]
web[1:4]

INVENTORY

[dev]
db1
web1

[testing]
db3
web3

[prod]
db2
web2
db4
web4

[east]
db1
web1
db3
web3

[west]
db2
web2
db4
web4

Use a single source of truth if you have it -- even if you
multiple sources Ansible can unify them

● Stay in sync automatically

● Reduce human error

INVENTORY

PUBLIC / PRIVATE
CLOUD

CMDB

Proper variable names can make plays more readable and
avoid variable name conflicts

● Use descriptive, unique human-meaningful variable names

● Prefix role variables with role name

apache_max_keepalive: 25
apache_port: 80
tomcat_port: 8080

VARIABLES

Make the most of variables

● Find the appropriate place for your variables based on
what, where and when they are set or modified

● Separate logic (tasks) from variables and reduce
repetitive patterns

VARIABLES

- name: Clone student lesson app for a user
 host: nodes
 tasks:
 - name: Create ssh dir
 file:
 state: directory
 path: /home/{{ username }}/.ssh

 - name: Set Deployment Key
 copy:
 src: files/deploy_key
 dest: /home/{{ username }}/.ssh/id_rsa

 - name: Clone repo
 git:
 accept_hostkey: yes
 clone: yes
 dest: /home/{{ username }}/lightbulb
 key_file: /home/{{ username }}/.ssh/id_rsa
 repo: git@github.com:example/apprepo.git

SEPARATE LOGIC FROM VARIABLES

EXHIBIT A

● Embedded parameter
values and repetitive home
directory value pattern in
multiple places

● Works but could be more
clearer and setup to be
more flexible and
maintainable

- name: Clone student lesson app for a user
 host: nodes
 vars:
 user_home: /home/{{ username }}
 user_ssh: "{{ user_home }}/.ssh"
 deploy_key: "{{ user_ssh }}/id_rsa"
 app_dest: "{{ user_home }}/exampleapp"
 tasks:
 - name: Create ssh dir
 file:
 state: directory
 path: "{{ user_ssh }}"

 - name: Set Deployment Key
 copy:
 src: files/deploy_key
 dest: "{{ deploy_key }}"

 - name: Clone repo
 git:
 dest: "{{ app_dest }}"
 key_file: "{{ deploy_key }}"
 repo: git@github.com:example/exampleapp.git
 accept_hostkey: yes
 clone: yes

SEPARATE LOGIC FROM VARIABLES

EXHIBIT B

● Parameter and home
directory values are set thru
values away from the task

● Human meaningful
variables “document” what’s
getting plugged into a
parameter

● More easily refactored into
a role

● Vim
o pearofducks/ansible-vim

o Glench/Vim-Jinja2-Syntax

● Sublime

● Atom

● Emacs

● PyCharm

USE SYNTAX HIGHLIGHTING

Maximize the readability of your plays

● Use native YAML syntax
o Vertical reading is easier
o Supports complex parameter values
o Works better with editor syntax highlighting

PLAYS & TASKS

- name: install telegraf

 yum: name=telegraf-{{ telegraf_version }} state=present update_cache=yes

 disable_gpg_check=yes enablerepo=telegraf

 notify: restart telegraf

- name: configure telegraf

 template: src=telegraf.conf.j2 dest=/etc/telegraf/telegraf.conf

- name: start telegraf

 service: name=telegraf state=started enabled=yes

NO!

USE NATIVE YAML SYNTAX

- name: install telegraf
 yum: >
 name=telegraf-{{ telegraf_version }}
 state=present
 update_cache=yes
 disable_gpg_check=yes
 enablerepo=telegraf
 notify: restart telegraf

- name: configure telegraf
 template: src=telegraf.conf.j2 dest=/etc/telegraf/telegraf.conf

- name: start telegraf
 service: name=telegraf state=started enabled=yes

Better, but no

USE NATIVE YAML SYNTAX

Yes!

- name: install telegraf
 yum:
 name: telegraf-{{ telegraf_version }}
 state: present
 update_cache: yes
 disable_gpg_check: yes
 enablerepo: telegraf
 notify: restart telegraf

- name: configure telegraf
 template:
 src: telegraf.conf.j2
 dest: /etc/telegraf/telegraf.conf
 notify: restart telegraf

- name: start telegraf
 service:
 name: telegraf
 state: started
 enabled: yes

USE NATIVE YAML SYNTAX

Names improve readability and user feedback

• Give all your Playbooks and tasks brief, reasonably
unique and human-meaningful names

PLAYS & TASKS

- hosts: web
 tasks:
 - yum:
 name: httpd
 state: latest

 - service:
 name: httpd
 state: started
 enabled: yes

PLAYS & TASKS

PLAY [web]

TASK [setup]

ok: [web1]

TASK [yum]

ok: [web1]

TASK [service]

ok: [web1]

EXHIBIT A

- hosts: web
 name: installs and starts apache
 tasks:
 - name: install apache packages
 yum:
 name: httpd
 state: latest

 - name: starts apache service
 service:
 name: httpd
 state: started
 enabled: yes

PLAYS & TASKS

PLAY [install and starts apache]

TASK [setup]

ok: [web1]

TASK [install apache packages]

ok: [web1]

TASK [starts apache service]

ok: [web1]

EXHIBIT B

Focus avoids complexity

● Keep plays and Playbooks focused. Multiple simple ones are
better than having a huge single playbook full of conditionals

PLAYS & TASKS

Separate provisioning from deployment and
configuration tasks

acme_corp/
├── configure.yml
├── provision.yml
└── site.yml

$ cat site.yml

- include: provision.yml
- include: configure.yml

PLAYS & TASKS

Clean up your debugging tasks

● Remove your debug tasks in production or make them
optional with the verbosity param in v2.1

- debug:
 msg: "This always displays"

- debug:
 msg: "This only displays with ansible-playbook -vv+"
 verbosity: 2

PLAYS & TASKS

Use run commands sparingly

● Use the run command modules like shell and command as a
last resort

● Use the command module unless you really need the pipelining
that shell permits -- but be careful

PLAYS & TASKS

Always seek out a module first

- name: add user
 command: useradd appuser

- name: install apache
 command: yum install httpd

- name: start apache
 shell: |
 service httpd start && chkconfig httpd on

PLAYS & TASKS

 - name: add user
 user:
 name: appuser
 state: present

 - name: install apache
 yum:
 name: httpd
 state: latest

 - name: start apache
 service:
 name: httpd
 state: started
 enabled: yes

Still using run commands a lot?

- hosts: all
 vars:
 cert_store: /etc/mycerts
 cert_name: my cert
 tasks:
 - name: check cert
 shell: certify --list --name={{ cert_name }} --cert_store={{ cert_store }} | grep "{{
cert_name }}"
 register: output

 - name: create cert
 command: certify --create --user=chris --name={{ cert_name }} --cert_store={{ cert_store }}

 when: output.stdout.find(cert_name)" != -1
 register: output

 - name: sign cert
 command: certify --sign --name={{ cert_name }} --cert_store={{ cert_store }}
 when: output.stdout.find("created")" != -1

PLAYS & TASKS

Develop your own module

- hosts: all

 vars:

 cert_store: /etc/mycerts

 cert_name: my cert

 tasks:

 - name: create and sign cert

 certify:

 state: present

 sign: yes

 user: chris

 name: "{{ cert_name }}"

 cert_store: "{{ cert_store }}"

PLAYS & TASKS

Don’t just start services -- use smoke tests

- name: check for proper response

 uri:

 url: http://localhost/myapp

 return_content: yes

 register: result

 until: '"Hello World" in result.content'

 retries: 10

 delay: 1

PLAYS & TASKS

Jinja2 is powerful but you needn't use all of it

● Templates should be simple:
o Variable substitution
o Conditionals
o Simple control structures/iterations
o Design for your use case, not the world's

● Things to avoid:
o Managing variables in a template
o Extensive and intricate conditionals
o Conditional logic based on hostnames
o Complex nested iterations

TEMPLATES

Jinja2 is powerful but you needn't use all of it

● Label template output files as being generated by Ansible

● Consider using the ansible_managed** variable with the
comment filter

{{ ansible_managed | comment }}

TEMPLATES

● Like Playbooks -- keep roles purpose and function focused

● Use a roles/ subdirectory for roles developed for
organizational clarity in a single project

● Follow the Ansible Galaxy pattern for roles that are to be
shared beyond a single project

● Limit role dependencies

ROLES

● Use ansible-galaxy init to start your roles…

● ...then remove unneeded directories and stub files

● Use ansible-galaxy to install your roles -- even private ones

● Use a roles files (i.e. requirements.yml) to manifest any
external roles your project is using

● Always peg a role to a specific version such as a tag or commit

ROLES

● Coordination across a distributed organization…

● Controlling access to credentials...

● Track, audit and report Ansible usage...

● Provide self-service or delegation…

● Integrate Ansible with enterprise systems...

SCALING YOUR ANSIBLE WORKFLOW

Command line tools have their limitations

Thanks

T H A N K Y O U ! ! !

A N D J O I N U S
A T T H E

T E C H - L A B
O N T H E

16.7.17

