

Carbon Footprints:

Optimising supply chain emissions for chemicals and plastics

> Compiled by: Matt Cutler - Commercial Lead - Sustainability, ICIS Arne Kätelhön - Co-Founder & CEO, Carbon Minds

Optimising supply chain emissions for chemicals and plastics

- 01 Challenges faced by the chemicals and plastics industry?
- 02 Data availability and the criticality of Scope 3 Emissions tracking
- 03 Business collaboration to resolve industry challenge
- 04 Understanding the variables a closer look at polypropylene
- 05 Q&A

Greenhouse Gas Emissions – Scope 1, 2 and 3

Source – Greenhouse Gas Protocol

carbon**minds**

Achieving climate targets – what's at stake and what's needed?

What is the problem?

- Mounting pressure to report, monitor and reduce environmental impact
- For chemicals and plastics companies, a large portion of carbon emissions occur in the supply chain. But obtaining *primary emissions data at a supplier level*, using a consistent methodology is impractical
- Many companies are setting targets and reporting annually using generic, aggregated secondary data that does not allow them to demonstrate progress

When is it a problem?

- When trying to set *realistic targets* for Scope 3 reduction
- When disclosing annual Scope 3 emissions and *measuring changes to prior years*
- When trying to choose the lowest carbon intensity suppliers, or challenge suppliers to reduce
- When trying to benchmark your carbon emissions position against peers and industry norms

Understanding Raw Material Attributes

- What differences exist among prime, neat resin pellets?
- Going forward, the range of carbon footprints associated with making those pellets will matter increasingly
- How can you tell if the pellets on the right have a high carbon footprint or a low one?
- Most polymers and chemicals are not equal in terms of their accumulated carbon footprints, but accumulating the data surrounding can be a cumbersome challenge

From an HDPE plant in Brazil with a the lowest carbon footprint in the world HDPE produced in China with **11 times** the carbon footprint of the Brazil pellet

HDPE produced in Louisiana with a 77% greater carbon footprint than the Brazilmade pellet

carbon**minds**

External factors driving the need for clarity on Scope 3 emissions

- Increased demands from customers for more sustainable products with lower environmental impacts
- Environmental and ethical demands from investors in choosing where to they want to invest and to what level
- Profit and reliability demands amid push to reduce carbon footprint
- Increased regulatory pressure and the prospect of additional mandated reporting
- Competitive pressure from peer companies setting climate targets and the need to keep pace

Summary

- Major manufacturers including chemical producers and plastics converters are committing billions of dollars to reach their climate targets
- These companies can have worldwide emissions of more than 20m tonnes of CO2 equivalents
- New emissions reductions targets for these organizations require them with cut millions more tonnes of CO2
- These ambitious targets require a robust solution that provides visibility into supplier-specific upstream Scope 3 emissions
- Such information will bridge the gap between generic secondary data and primary carbon footprint data which through suppliers in the future

20m

Tonnes of CO2 equivalent emissions at present from a major global chemical producer

920m

Estimated tonnes of CO2 equivalent emissions per year globally from the chemical industry

A shared mission

Accelerate the measurement and reduction of chemical supply chain emissions.

Unique combinations

We combine ICIS' deep understanding of chemical markets with ground-breaking carbon footprint data from Carbon Minds.

Our solution

carbon**minds**

Comprehensive and reliable carbon emission data for chemicals by region, plant and supplier.

carbon**minds**

Supplier Carbon Footprints

- Measure, report and <u>reduce</u> supplychain emissions for chemicals and plastics with independent, reliable, emissions data by supplier, plant
- Data covers 71 bulk chemicals and plastics present in around 95% of manufactured goods
- Third party certified ISO14040/14044
 compliant methodology
- Interactive visualisation on the ICIS digital platform
- Full LCA methodology provided for all products

Part Very Company Very	25 1				APRENTED, IN MAY JULY	0.04
Commodity	Region		Process technology			- 14: X 14
Polypropylene	V All regions selected	. Wi	All processes pelected	98	# More Filters	Mathodology 🖉
Carbon Pochprint (kg I.Cotry/kg 1) 10 8	аналаса опри #					1
Carbon Fockprint (kg ECI-ray)s 11 10 8 8 8	angan sa na na					1
Carbon Pockprint (ng CC-rep/le 1) 10 8 8 8 8 8 8	21. 21.					

Example: National average climate impacts of polypropylene production

...suppliers' emissions vary, even within a single nation

Supplier emissions vary for every chemical because of differences in the production process

Supplier Carbon Footprints reveal climate impacts by accounting for each suppliers' precise production process

12 Supplier 1 Carbon feedstock: Coal Propylene: Methanol to Propylene Carbon footprint in kg CO2 eq per kg polypropylene Polypropylene: Suspension process Supplier 2 8 Carbon feedstock: Natural gas Propylene: Dehydrogenation of propene Polypropylene: Gas-phase polymerization Supplier 3 Carbon feedstock: Crude oil Propylene: Steam cracking of naphtha 4 Polypropylene: Gas-phase polymerization 0

Supplier impacts in China

What values does supplier-specific data provide?

Discover the CO₂ emissions across your supply chain

Thank you Matt Cutler - ICIS Arne Kätelhön - Carbon Minds

Contact ICIS

Matt Cutler *Commercial lead – Sustainability*

matt.cutler@icis.com