
RAD Server
Technical Guide
Part 1

https://github.com/Embarcadero/RADServer-docs

Preface

RESTful architectures are a key driving force behind modern API first application design. This book
focuses on the RAD Server framework included with RAD Studio (Delphi/C++Builder) for developing
such platforms.

RAD Server is a full backend MEAP (Mobile Enterprise Application Platform) that enables Desktop,
Mobile and Web frontend development in any language, and this book is designed as a definitive guide
for developers.

The benefit of a MEAP is that you have a pre-built cloud or on-prem server with many core capabilities
(such as push notifications, user tracking and analytics) that you can plug into rapidly to deliver remote
database and functional access.

This guide to Embarcadero RAD Server, originally authored by David I (2019), is in its second edition,
revised by Antonio Zapater (2023), which includes many additional features added based on market
demand since RAD Servers Launch. The second edition is also supported by a comprehensive video
series supporting each chapter, along with source code examples on GitHub.
https://github.com/embarcadero/radserver-docs

▶
videos

You can access all the video series linked to this paper you have it available on
Youtube. Also, we strongly recommend downloading all the examples from this
GitHub Repository.

https://www.youtube.com/playlist?list=PLwUPJvR9mZHj6Ixqd53dREQ-c4CN51RVF
https://www.youtube.com/playlist?list=PLwUPJvR9mZHj6Ixqd53dREQ-c4CN51RVF
https://github.com/embarcadero/radserver-docs
https://www.youtube.com/playlist?list=PLwUPJvR9mZHj6Ixqd53dREQ-c4CN51RVF
https://www.youtube.com/playlist?list=PLwUPJvR9mZHj6Ixqd53dREQ-c4CN51RVF
https://github.com/embarcadero/radserver-docs

Table of contents

Table of Contents
01 - What is RAD Server? Introduction.. 6

RAD Server Overview.. 6
Building RAD Server based applications – Seven Key Aspects... 8
Requirements for Building a RAD Server Applications...9

Using the RAD Studio IDE... 9
RAD Server Testing and Deployment Licenses..9

Roundup of Core RAD Server Features..9
Core Features... 9

See Also..11
02 - Using the RAD Wizard to Create a “Hello World”... 12

Building REST Based Services..13
Using the RAD Server Project Wizard.. 13
The Wizard RAD Server Project and Source Code... 17

Configuring RAD Server for your first Application...18
Testing your first RAD Server Application..23
See Also..25

03 - Creating your first CRUD Application.. 26
Building REST Based Services with CRUD functionalities..26
Explaining the project generated... 29
Building and testing the project... 31
Additional features of TEMSDatasetResource.. 32

04 - REST Debugger..35
What is REST Debugger and where to find it... 35
Sending our first PUT Request with REST Debugger...36
Other features included with REST Debugger.. 38

05 - Using FireDAC Batch Move and JSONWriter..39
Returning JSON Database Data Using a Memory Stream...39
Using FireDAC’s BatchMove, BatchMoveDataSetReader and BatchMoveJSONWriter.......................... 42
See Also..45

06 - JSONValue, JSONWriter and JSONBuilder..46
Frameworks for Handling JSON Data...46
Using JSONValue...47

Example using JSON classes..48
Using JSONWriter... 50

Example using JSONWriter...50

3 (Copyright © Embarcadero Technologies, Inc.)

Table of contents

Using JSONBuilder..52
See Also..53

07 - Creating your own customized endpoints... 54
An example of good practices...54
Avoiding APIs to be too chatty... 55
Adding sub-resources..55
Adding nested data in a response (Master/Detail)...56
Testing the new implementations... 61
Creating custom GET, POST, PUT, DELETE methods..64
Handling response errors... 66
See also.. 66

08 - Accessing the built-in analytics... 67
Main Characteristics... 67
Accessing the RAD Server Console.. 68

09 - Deploying RAD Server... 71
Where can RAD Server be deployed..71
Using the installers from GetIt..72
Prerequisites to deploy RAD Server manually.. 72
Deploying on Windows manually... 73

InterBase Server engine...73
RAD Server installation... 74
Web Server (IIS or Apache).. 77

Deploying on Linux manually..78
Compatible Distros.. 78
Installing InterBase Server engine... 78
Registering and starting InterBase Server...79
Running InterBase as a Service...79
Installing RAD Server... 80
Setting Up RAD Server for Apache..81

Deploying on Docker..82
Option 1: PA-RADServer-IB... 83
Option 2: PA-RADServer...83

Copying RAD Server modules compiled with RAD Studio... 84
Configuring the EMSServer.ini file..85

10 - RAD Server Lite... 86
What is the Lite version?.. 86
How to get a RAD Server Lite License...87

4 (Copyright © Embarcadero Technologies, Inc.)

Table of contents

Deploying a RAD Server Lite project..87
The Files to Deploy...88

Deploying manually.. 88
Using the Deployment Wizard.. 88

MSVC runtime.. 89
Creating the Production Database.. 89
Proxy Configuration.. 90
For Linux...90

5 (Copyright © Embarcadero Technologies, Inc.)

Chapter 1: What is RAD Server? Introduction -▶Watch the video

01
What is RAD Server?

Introduction
Today's computing landscape is no longer confined to a desktop, device, server or data center.
Applications are being moved from the desktop to multiple devices, network edge connections, and to
on-premises, public and hybrid cloud services. With RAD Server and RAD Studio you can build
solutions that cover the wide spectrum of your company's (and customers) computing needs and
business requirements.

This documentation will show you how to quickly design, build, debug and deploy service based
multi-tier applications using RAD Server’s REST based API hosting engine, components and
technologies that are available in RAD Studio, Delphi and C++Builder Enterprise and Architect editions.

📃
note

Throughout the RAD Server documentation and source code, you’ll see references to
EMS (Enterprise Mobility Services). EMS was the original name of what is now called
the RAD Server product.

 RAD Server Overview
Embarcadero’s RAD Server provides a turn-key application foundation for rapidly building and
deploying services-based applications using Delphi and C++Builder. RAD Server supports the REST
(Representational State Transfer) protocol with JSON (or XML) parameter passing and return results.
You can publish APIs, manage users and devices that are connected to the RAD Server, capture

6 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/jWdt-5Z3lrY

Chapter 1: What is RAD Server? Introduction -▶Watch the video

analytics about the use and users of applications, connect to local and enterprise databases using the
FireDAC components and much more. RAD Server also supports user authentication, push notifications,
geolocation and data storage.

Develop and Test REST endpoints and Location Tracking

With RAD Server’s wizards, components and tools you can quickly develop new middleware and
back-end applications or migrate your existing Delphi and C++Builder client/server applications to a
RAD Server based application to run on a server or in the cloud. You can publish your endpoints for
REST calls from desktop, mobile, console, web and other types of applications. RAD Server comes with
a full set of the tools, components, database connectivity and interfaces that you will rely upon in
building your service applications.

RAD Server applications can be deployed on top of Microsoft Windows IIS and Apache web servers
and you can deploy your Delphi based services to Linux Intel 64-bit servers. For C++Builder support for
Linux stay tuned for updates to the Embarcadero RAD Studio blogs.

7 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/jWdt-5Z3lrY

Chapter 1: What is RAD Server? Introduction -▶Watch the video

Develop and Test REST endpoints, Location Tracking and IoT Edgeware

 Building RAD Server based applications – Seven Key Aspects
To build RAD Server based applications, the diagram below guides developers through seven aspects
and development phases.

Multi-Tier Development Made Easy

To start, create your server REST/JSON API-based endpoints (you can also use XML instead of JSON if
required). Next you will extend your endpoints by integrating a wide range of databases, cloud services
and other technologies.

You can add more application endpoints to users and create API access control rules. You can write
code that leverages RAD Server’s built-in secure data store to keep track of persistent data. You can
create user groups and add users via console portal and import and authenticate users via LDAP-based
API services.

After you have developed and debugged your applications you can host RAD Server applications on a
private on-premises Windows and Linux servers. You can also migrate your applications to cloud
systems like Amazon AWS, Microsoft Azure, Google and other cloud providers.

After your application is put into production, you can manage access to your APIs, control users access
and analyze the utilization of your endpoint API activity with built-in application management
interfaces. Finally, you can build desktop, mobile, Web, console and other application types supported
by RAD Studio. You can also build modern Web client applications using the Sencha’s Ext JS set of
components and use other tools and programming languages to build client applications that support
your RAD Server application’s REST/JSON functionality.

8 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/jWdt-5Z3lrY

Chapter 1: What is RAD Server? Introduction -▶Watch the video

 Requirements for Building a RAD Server Applications
The following sections contain the product and technical requirements for building, testing and
deploying RAD Server applications. Unless otherwise noted, “RAD Studio” and the IDE apply to the
RAD Studio, Delphi and C++Builder products.

 Using the RAD Studio IDE
A RAD Studio Enterprise or Architect Edition with a commercial license is required to build RAD Server
applications. The trial edition of RAD Studio Enterprise can be used for 30 days for development and
testing. The trial edition does not support deployment to a production server.

 RAD Server Testing and Deployment Licenses
The free 30 day RAD Studio trial includes RAD Server 5-user development trial. RAD Server
deployment licenses are included in Enterprise and Architect commercial editions of RAD Studio. RAD
Studio Enterprise includes a single-site deployment license for RAD Server whereas RAD Studio
Architect edition includes a multi-site deployment license for customers who are on active Update
Subscription. Since RAD Studio Alexandria, Enterprise as well as Architect include the option of
deploying RAD Server Lite in a multi-site environment.

RAD Server requires an InterBase encrypted database as part of deploying your applications in a
Production Environment. You will need to use a valid RAD Server license to install this version of
InterBase.

💡
tip

In case you want to deploy your application using InterBase as well, you will need 2
instances of InterBase running: one for your application and one for RAD Server.

 Roundup of Core RAD Server Features
RAD Server provides developers with a wide spectrum of features for building REST-based service
applications. RAD Server (formerly known as EMS) was first introduced in RAD Studio version XE7.
Since that first release enhancements and new capabilities have been added to address the needs of
developers and add support for new platforms, architectures and techniques.

 Core Features
Here is a list of some of RAD Server’s core features that you’ll want to leverage in building your
services-based applications.

● REST End Point Publishing – RAD Server implements a turnkey foundation for your application
back end APIs and Services. RAD Server provides an easy to use API for publishing your
business logic. Delphi or C++ code can be hosted as an API and auto-published as REST/JSON
endpoints which are measured and managed by RAD Server. Endpoint publishing features
include:

9 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/jWdt-5Z3lrY

Chapter 1: What is RAD Server? Introduction -▶Watch the video

◦ Access Control – You can set up group and user level access, with authentication, to all
application APIs and control who has access to your application’s API functionality. Create
your own users and groups or import them automatically from your LDAP infrastructure.

◦ API Analytics – All REST API end-point activity is recorded and measured for robust
statistics tracking and analytics. You can analyze user, API, and services activity daily,
monthly and yearly to gain insight into how your application is being utilized. You can also
filter activity for all resources or by specific groups, users, device installations, and more. You
can also export analytics to a CSV file for additional analysis with other tools.

◦ Desktop, Mobile & Web Client Applications – All C++ and Delphi code hosted on RAD
Server is published as REST/JSON end points consumable by any type of client application
on multiple platforms for extreme flexibility and future-proofing.

● Integration Middleware – RAD Server provides multiple integrations out of the box with
connectivity to external servers, applications, databases, smart devices, cloud services and other
platforms. Integration capabilities include:

◦ Enterprise Data – RAD Server delivers high performance built-in connectivity to all popular
Enterprise RDBMS servers. Database connectivity uses the FireDAC set of components and
libraries for easy connectivity with data from a variety of sources.

◦ Cloud Services – With RAD Server you can easily integrate REST cloud services from a
variety of cloud, social, and BaaS platforms such as Google, Amazon, Facebook, Kinvey, and
more.

● Application Services – RAD Server includes a collection of ready to use built-in services to
power your application. RAD Server includes core functions such as user directory services and
user management, push notifications, user location tracking, and built-in data storage. Some of
these application and device services include:

◦ Push Notifications – using RAD Server you can send programmatic or on-demand
notifications to your application users and their devices. RAD Server currently supports push
notification systems including Apple Push Notification service (APNs) and Google FireBase
Cloud Messaging (FCM). You can also write custom code to connect with other push
notification systems.

◦ Built-in Secure Datastore – With RAD Server’s support for securing an InterBase server’s
encrypted datastore you can use built-in APIS TO store and retrieve JSON data without
requiring a separate database server.

◦ User/Group Management –Using RAD Server APIs you can create and manage your users,
user groups, and control access via the RAD Server console (RSConsole.exe). Integrate your
ActiveDirectory (LDAP) or develop your own custom authentication middleware.

◦ User Location/Proximity – Your RAD Server applications can leverage RAD Studio’s support
for GPS, beacon and beacon fence technology. RAD Server applications can track user

10 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/jWdt-5Z3lrY

Chapter 1: What is RAD Server? Introduction -▶Watch the video

movement, both indoors and outdoors, and respond to proximity events when users enter
and exit custom beacon zones or approach designated beacon points.

◦ Static Files Provider – Map URLs to folders and return the content of files like HTML, JS, CSS,
images and more. This is extremely handy in small deployments (IE: using RAD Server Lite)
or in development environments.

● API Documentation – Create easily documentation of your API using attributes and the built-in
Swagger OpenAPI integration. Embed Swagger UI into RAD Server itself or configure it in
remote instances through the auto-generated YAML and JSON files.

● Easy to Deploy – RAD Server is easy to develop, deploy and operate making it ideally suited for
ISVs and OEMs building re-deployable solutions. Deploy it on Windows, Linux or Docker.

 See Also
For the latest updated information about installation of RAD Studio and deployment of RAD Server
based applications please refer to the following Embarcadero online links.

● RAD Server Product Overview
● RAD Studio Installation Notes
● RAD Studio and RAD Server Supported target platforms
● RAD Server Database Requirements for a Production Environment
● RAD Studio’s Platform Status Page
● InterBase
● FireDAC
● FireDAC Supported Databases
● RAD Studio Enterprise Mobility Services
● RAD Studio Product Feature Matrix (PDF - Check RAD Server section)
● Swagger Open API
● EMS Push Notifications
● Apple Push Notification service (APNs)
● Firebase Cloud Messaging (FCM)

11 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/jWdt-5Z3lrY
https://www.embarcadero.com/products/rad-server
http://docwiki.embarcadero.com/RADStudio/en/Installation_Notes
https://docwiki.embarcadero.com/RADStudio/en/Supported_Target_Platforms
https://docwiki.embarcadero.com/RADStudio/en/RAD_Server_Database_Requirements_for_a_Production_Environment_on_Windows
http://docwiki.embarcadero.com/PlatformStatus/en/Main_Page
https://docwiki.embarcadero.com/RADStudio/en/InterBase
https://docwiki.embarcadero.com/RADStudio/en/FireDAC
https://docwiki.embarcadero.com/Status/en/FireDAC_Database_Support
https://docwiki.embarcadero.com/RADStudio/en/Enterprise_Mobility_Services_(EMS)
https://www.embarcadero.com/docs/rad-studio-feature-matrix.pdf
https://swagger.io/docs/specification/about/
https://docwiki.embarcadero.com/RADStudio/en/EMS_Push_Notifications
https://developer.apple.com/notifications/
https://firebase.google.com/docs/cloud-messaging/

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

02
Using the RAD Wizard to

Create a “Hello World”
It’s time to start programming. In this chapter, you’ll learn how to build your first RAD Server based
service applications using Delphi and C++Builder. Before you begin, you’ll want to make sure that your
InterBase database server is running. RAD Server uses an InterBase database for the storage of user
information, user groups, analytics, registered devices, version information, registered Edge Modules,
push notification messages and more.

InterBase 2020 Server Manager

12 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

 Building REST Based Services
RAD Server includes Enterprise Mobility Services (EMS) and offers a Mobile Enterprise Application
Platform (MEAP) that you can host in a cloud or on-premises. Developers can use RAD Server to
expose custom REST APIs and access enterprise database data using the FireDAC data access library
and components.

RAD Server provides developers with a comprehensive solution that includes remote database access,
user tracking, device application management, use analytics and more. Compared to other solutions,
RAD Server includes a pre-built application server that supports integration of custom packages. These
custom packages can expose data sets, business logic and other REST-based resources. Components
are also available for mobile, web and desktop application code to access RAD Server resources.

RAD Server REST API Architecture

 Using the RAD Server Project Wizard
The fastest way to get started is to use the New Projects menu (File | New | Other…) and choose the
RAD Server | RAD Server Package wizard for Delphi or C++Builder.

13 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

RAD Server Project Wizard choices for Delphi and C++

Select the RAD Server Package project. A wizard will appear to help create the starting project. On the
first page choose how the wizard will create the resources and endpoints that will appear in the RAD
Server application. The RAD Server Package Wizard provides two choices to proceed.

Choice 1: Create an empty package that does not register a resource. Choose this option if you are going
to add your resources later on. Using this choice, a package project will be created with a starting main
library.

Create an empty RAD Server package

14 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

Clicking the Finish button will create the starting project for additional development work to create the
finished RAD Server application.

Choice 2: Create a package with a resource that extends the REST API for the RAD Server. Click the
Next Button and two additional wizard steps will appear to help create the package project, resource
and endpoints. To build the first RAD Server project make this choice.

Create a resource based RAD Server package

On the wizard’s second page set the Resource name to “Test”. The File type radio buttons presents two
options: 1) create a unit for implementing the resource in code, and 2) create a data module for
implementing the resource using the IDE’s designer, components and code editor. For this first RAD
Server application chose to use a Data Module.

15 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

RAD Server Package Wizard page 2 - set the resource name and file type

Click the Next button to create a starting set of endpoints.

RAD Server Package Wizard page 3 - choose starting EndPoints

On the wizard third page leave the suggested endpoints as you can see it in the picture above: Get
(REST GET) and GetItem (REST GET with a segment at the end of the URL that identifies the item to
get) and uncheck “API Documentation”. To create your starting project click the Finish button.

16 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

📃
note

There are two extra options in the wizard: Database EndPoints (link your Database to
endpoints using FireDAC) and API Documentation (Swagger OpenAPI). We will talk
about these in the next chapters in more detail.

After the wizard completes, you are placed back in the IDE. The first thing to do is to save the project.
For the C++ and Delphi data module, use the name “MyDMUnit”. For the C++ project and package use
the name “MyHelloWorldCppRADServerPackage”. For the Delphi project and package use the name
“MyHelloWorldDelphiRADServerPackage”.

 The Wizard RAD Server Project and Source Code
 The project created is very low-code and it has just a couple of methods linked to each endpoint. RAD
Studio populates automatically those with some default code that we’ll tweak a bit to make it more
Hello World-y.

Here’s how the projects on Delphi and C++ should look like. The DataModule created will be empty
with no components in it. After the screenshots you can find the modifications done in the sample code
auto-generated.

Generated Delphi project Generated C++ Project

📃
note

All the source code and samples used in this document are hosted on GitHub and
split in chapters. We strongly recommend you to download the whole repository to
follow the documentation in a better way.

17 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA
https://github.com/Embarcadero/RADServer-Docs

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

MyDMUnit.pas:

procedure TTestResource1.Get(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

begin

AResponse.Body.SetValue(TJSONString.Create('Hello World'), True)

end;

procedure TTestResource1.GetItem(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

var

LItem: string;

begin

LItem := ARequest.Params.Values['item'];

AResponse.Body.SetValue(TJSONString.Create('Hello World ' + LItem), True)

end;

MyDMUnit.cpp:

void TTestResource1::Get(TEndpointContext* Acontext,

TEndpointRequest* ARequest, TEndpointResponse* AResponse)

{

AResponse->Body->SetValue(new TJSONString("Hello World"), True);}

void TTestResource1::GetItem(TEndpointContext* Acontext,

TEndpointRequest* ARequest, TEndpointResponse* AResponse)

{

String item;

item = ARequest→Params→Values["item"];

AResponse->Body->SetValue(new TJSONString("Hello World "+item), True);

}

Configuring RAD Server for your first Application
Now that you’ve used the wizard to build your first RAD Server application, you can use the IDE to
compile and test the application. The IDE uses the EMSDevServer as the host executable
(EMDDevServer.exe) to start execution with the parameter being the package file to load. There are two
versions of the EMSDevServer for Win32 and Win64 development ($(BDS)\bin\EMSDevServer.exe and
$(BDS)\bin64\EMSDevServer.exe). This is all configured automatically by the IDE.

18 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

Run | Parameters... dialog showing EMSDevServer.exe as the Host application

RAD Studio also includes EMSDevConsole.exe which will start the EMSDevConsole server and open
the EMS Console Server Window. The EMS Console provides a web application which displays
analytics, provides for user/group management, and more for your RAD Server application. This console
is addressed in more detail in a next chapter.

Choose the Run | Run menu item or hit F9 to compile, link and run the starting application. The RAD
Server Development Server will start, by default, using TCP port 8080. If this is the first time run of a
RAD Server Application a dialog box will appear that says the RAD Server configuration file,
emsserver.ini, was not found. This happens when there is no RAD Server registry key or if the
configuration file does not exist.

Trying to start the RAD Server Development Server without a configuration file

Click the Yes button to run the RAD Server configuration wizard.

19 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

Setup wizard page 1 - specify the new EMS database connection parameters

In the first wizard step, enter the InterBase server instance (by default RAD Studio’s development
version of InterBase Server uses gds_db). This wizard page also contains the name for the RAD Server
database (emsserver.ib), and directory that will contain the database and configuration file.

⚠
warning

If you previously installed InterBase in your computer using a different server instance
name, enter that name string.

Click the Next button to tell the wizard whether you to create sample RAD Server database data for
users and user groups. For development and testing we’ll set both check boxes.

Click the Next button to set up the user name and password for logging into the RAD Server console.

20 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

Setup wizard page 2 - Sample users and groups
Setup wizard page 3 - choose a Console user name

and password

And lastly click the Next button to go to the final wizard step. The wizard is ready to create the RAD
Server database file, configuration file, and set the Windows registry key for the currently logged in
user.

Final RAD Server configuration wizard page

21 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

This page displays the database file path and name, configuration path and name and the Windows
Registry key. You can always make changes to the RAD Server configuration file (emsserver.ini) at any
time. Click the Finish button. A confirmation dialog will appear with a reminder that the configuration
will use an instance of InterBase that does not have a RAD Server license. The development license
limits your RAD Server application to a maximum of 5 users. When you are ready to deploy your RAD
Server application you’ll be able to use your deployment licenses for RAD Server and InterBase.

Click the Yes button. The wizard will display location of the emsserver.ini configuration file. It also lists
the sample data that has been added to the database.

List of RAD Server files created by the configuration wizard

Click the OK button. Two files now appear in the C:\Users\Public\Documents\Embarcadero\EMS
directory.

Files on disk created by the RAD Server configuration wizard

📃
note

The emsserver.ini file is where all the default parameters of RAD Server are defined.
Even though it will be addressed in next chapters feel free to check its content and
the extense documentation specified into the file itself.

22 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

In general, the RAD Studio IDE is started without administrator privileges. So the
Windows registry entry for HKEY_LOCAL_MACHINE get virtualised to
HKEY_CURRENT_USER\Software\Classes\VirtualStore\MACHINE\SOFTWARE\WO
W6432Node\Embarcadero\EMS on a Windows 64 bit operating system.

 Testing your first RAD Server Application
When the RAD Server configuration server is created, the RAD Server Development Server will start
executing.

⚠
warning

The default port where EMSDevServer runs is 8080. If your computer uses that port
for another service you can change the default port used changing it on the “Port”
field for whichever suits your needs. To make this change permanent modify in the
emsserver.ini file the parameter [Server.Connection.Dev]

When you hit run in the IDE your RAD Server Development Server will start executing and the Log will
show the operations that take place for your package application. The Development Server is exactly
the same on Delphi and C++.

RAD Server Development Server starting the first application package

The RAD Server Development Server log will display the configuration, database connection, licensing
information, the application package that was loaded, the resources that were registered, and endpoints
that were created.

Clicking the Open Browser button will start your default browser and display the JSON result of calling
the GetVersion built-in endpoint. You’ve now used your first RAD Server REST endpoint!

23 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

💡
tip

To get a more human readable JSON responses on your browser you can install the
extension “JSON Parser”. It is available for all the major browsers.
OnMicrosoft Edge there is a setting under “edge://flags” called “JSON viewer”.
Enabling this gives you a readable JSON response without installing an extension

Browser showing the output from calling the version endpoint

In the browser, change the URL to localhost:8080/Test and hit enter. The browser will receive the JSON
response from the Get endpoint.

Browser showing the JSON output from the Test resource's Get method

If you pass an additional item on the URL, the GetItem endpoint will be called, and the code behind will
return a JSON string containing the resource name plus the item you typed.

24 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA

Chapter 2: Using the RADWizard to Create a “Hello World” -▶Watch the video

Browser showing the JSON output from the Test resource's GetItem method

For simple examples it's okay to return a JSON string, but for larger, more complex data structures, you
may not want to return a large JSON string. RAD Studio provides many other ways to generate JSON
data including using JSON objects, JSON streams and the JSON writer.

Edit the URL to use the “users” resource which will call the default GetUsers endpoint to display JSON
for the user generated by the RAD Server configuration wizard in the RAD Server datastore (there is
only one to start).

JSON response in the Browser for a call to the GetUsers end point

You’ve now used four of the endpoints that were generated by the RAD Server project wizard.

 See Also
● Code Samples on in this chapter
● RAD Server Engine (EMS Server)
● Setting Up Your RAD Studio (EMS) Server
● Configuring Your EMS Server or EMS Console Server on Windows
● RAD Server Administrative API

25 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/CVQh-CDnGEA
https://github.com/Embarcadero/RADServer-Docs
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/RAD_Server_Engine_(EMS_Server)
http://docwiki.embarcadero.com/RADStudio/en/Setting_Up_Your_EMS_Server
http://docwiki.embarcadero.com/RADStudio/en/Configuring_Your_EMS_Server_or_EMS_Console_Server_on_Windows
http://docwiki.embarcadero.com/RADStudio/en/EMS_Administrative_API

Chapter 3: Creating your first CRUD Application -▶Watch the video

03
Creating your first CRUD

Application
RAD Studio provides multiple ready to use components but one of the most useful ones when it comes
to create CRUD APIs is EMSDataSetResource. This component allows you to link a FireDAC query to it
and expose not only the data but also manipulate it. The component automatically creates all the
required endpoints for CRUD and provides extra functionality like pagination, sorting and more.

The EMSDataSetResource can be created in any of your current units or even easier, use the RAD
Server Wizard to create all the required components automatically linked to a FDConnection.

📃
note

On this demo we will use the employee InterBase database but feel free to use any
other database compatible with FireDAC. The only requirement to use the RAD
Server Wizard is that the database connection is preconfigured in the “Data Explorer”
so it’s recognised by RAD Studio.

 Building REST Based Services with CRUD functionalities
As we did in the previous chapter, the fastest way to get started is to use the New Projects menu (File |
New | Other…) and choose the RAD Server | RAD Server Package wizard for Delphi or C++Builder.

26 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

RAD Server Project Wizard choices for Delphi and C++

Select the RAD Server Package project. A wizard will appear to help create the starting project. On the
first page choose how the wizard will create the resources and endpoints that will appear in the RAD
Server application. The RAD Server Package Wizard provides two choices to proceed.

Now create a package with a resource that extends the REST API of the RAD Server. Click the Next
Button and two additional wizard steps will appear to help create the package project, resource and
endpoints. To build the first RAD Server project make this choice.

Create a resource based RAD Server package

27 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

On the wizard’s second page set the Resource name to “Test”. The File type radio buttons present two
options: 1) create a unit for implementing the resource in code, and 2) create a data module for
implementing the resource using the IDE’s designer, components and code editor. For this first RAD
Server application chose to use a Data Module.

RAD Server Package Wizard page 2 - set the resource name and file type

Click the Next button to create a starting set of endpoints.

RAD Server Package Wizard page 3 - choose starting EndPoints

28 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

On the wizard third page we will choose different options compared with the previous chapter. In this
case we are going to uncheck “Sample EndPoints” and check “Database Endpoints”. Now click “Next”.

RAD Server Package Wizard page 4 - choose database and tables

Once the project is generated we should see a FDConnection, 2 FDQueries and 2 EMSDataSetResource.

Data Module generated by the Wizard

 Explaining the project generated
The beauty of this demo is that we could build it already and we will be able to access the endpoints
auto generated for us, but first, let’s fix something: Access the code of the DataModule and change the
attributes of the endpoints. This is not really relevant but it’s common good practice to keep your
endpoints lowercase as well as pluralized.

29 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

Delphi:

[ResourceName('test')]

TTestResource1 = class(TDataModule)

FDConnection1: TFDConnection;

qryCUSTOMER: TFDQuery;

[ResourceSuffix('customers')]

dsrCUSTOMER: TEMSDataSetResource;

qrySALES: TFDQuery;

[ResourceSuffix('sales')]

dsrSALES: TEMSDataSetResource;

C++:

static void Register()

{

std::unique_ptr<TEMSResourceAttributes> attributes(new

TEMSResourceAttributes());

attributes->ResourceName = "test";

attributes->ResourceSuffix["dsrCUSTOMER"] = "customers";

attributes->ResourceSuffix["dsrSALES"] = "sales";

RegisterResource(__typeinfo(TTestResource1), attributes.release());

}

As we can see, the ResourceSuffix attributes are linked to the EMSDatasetResources. That means that
the query linked to that DatasetResource will be exposed under that endpoint.

The project couldn’t be simpler. Not one line of logic coded by us so far and we have a fully functional
CRUD system linked to 2 tables. Let’s build the project and analyze it in further detail.

30 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

 Building and testing the project

RAD Server Log showing all the endpoints created automatically

 We can see on the RAD Server log that the endpoints “customers” and “sales” have been created but
also with the parameters {id} available in the URI to get/put/delete individual records or post new ones.

 If we open the browser and access the URL http://localhost:8080/test/customers/ it returns an array
with all the records in the table customers.

Array of customers returned by RAD Server

31 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

To access a specific customer using their ID (Cust_No) we just need to send the request
http://localhost:8080/test/customers/1004. As you have probably already guessed, if you want to
access the sales endpoint you simply need to call http://localhost:8080/test/sales/ and so on.

Accessing a specific customer using their ID

⚠
warning

When using TEMSDatasetResource it is crucial to keep the slash / at the end of the
endpoint. Accessing the endpoint without the / RAD Server will drop a “not found”
exception.

 Additional features of TEMSDatasetResource
 What we’ve seen so far is very impressive already. We can expose in just a few clicks as many datasets
as we need and develop our API very rapidly, but TEMSDatasetResource offers even more features
built-in. Let’s analyze the key ones:

32 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

 AllowedActions – built in control for allowing or
preventing List, Get, Post, Put, and Delete on
endpoints.

DataSet – connect to a dataset: Query, Table etc.

KeyFields – choose dataset fields that must be
matched when doing a lookup.

PageParamName – name of the parameter to use
pagination through the URL. IE: ?page=1

PageSize – when accessing LIST action, define the
pagination size of the payload.

SortingParamPrefix – text string that will be
pre-pended to a data setValueFields entry.

ValueFields – choose fields to use in a parameterized
query and also to appear in the JSON response

Options – sub-property settings to enable/disable
param use, row paging, data set field sorting, etc.

 Now that we know a bit more about this component, let’s try to use some of these features in our API. If
we access http://localhost:8080/customers/?sfCONTACT_LAST=A&page=1 we will get the first page of
customers in ascending order by the field CONTACT_LAST. If we change the value =A for =D the
response will be in descending order.

 But how is that “order by” injected into the SQL? If we open the FDQuery we will see the next
statement:

 select * from customer

{IF &SORT} order by &SORT {FI}

 As we can see, the SQL statement is very simple, but that macro is key for this to work. The
EMSDatasetResource uses that macro for being able to mix pagination and ordering in the same query
for us.

📃
note

When pagination is being used and we reach the end of the Dataset, RAD Server will
simply return an empty array to let us know that there is nothing else in that page.

 Another very useful functionality is the option of fetching fields from our database to be used in our
logic but we don’t want to expose those fields in our API. Using the property ValueFields we can easily
choose which fields we want to publish.

33 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 3: Creating your first CRUD Application -▶Watch the video

Selected fields to publish in our API endpoint

34 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/ud3KFTq7vr8

Chapter 4: REST Debugger -▶Watch the video

04
REST Debugger

During these first chapters we have talked about the available actions in the REST API ecosystem, but
so far, we have only used GET through a browser. If you are wondering how to use the actions POST,
PUT and DELETE, in this chapter we will see a tool that comes with RAD Studio called REST Debugger
and not only it will simplify your testing process, but also will help you to develop applications in a
faster way.

💡
tip

REST Debugger is not a product only to be used with RAD Server. You can use it to
access any other third-party REST API service and speed up your development
process taking advantage of its integration with RAD Studio.

 What is REST Debugger and where to find it
 REST Debugger is Embarcadero's free solution for exploring, understanding, and integrating RESTful
web services with Delphi and C++Builder apps. It empowers developers to explore, test, and ultimately
understand how a RESTful web service works with features such as filterable JSON blobs, streamlined
OAuth 1.0/2.0 authentication, and configurable request/resource parameters. Not only that, but also
offers you the possibility to copy and paste REST components directly into your projects in just a few
clicks.

If you want to give it a try, you can find it in RAD Studio under the menu Tools/REST Debugger or you
can also download a standalone version for free on this link.

35 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/c7KFvP8nF7Q
https://www.embarcadero.com/free-tools/rest-debugger
https://www.embarcadero.com/free-tools/rest-debugger

Chapter 4: REST Debugger -▶Watch the video

REST Debugger UI

 Sending our first PUT Request with REST Debugger
 We can see on the dropdown on the left that the default value is GET, but we can now choose other
ones we can’t on a browser.

 Using the same project we created on chapter 3 let’s modify a customer.

⚠
warning

It’s indispensable to have the RAD Server project from chapter 3 up and running.
Otherwise we won’t be able to call the API endpoint.

 To modify a customer we just need to call the customers endpoint with the ID of the one we want to
modify. Also, we need to specify in the body of the request the new values of the properties.

36 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/c7KFvP8nF7Q

Chapter 4: REST Debugger -▶Watch the video

Defining the required values to send the PUT Request

To configure the request we have defined the Method PUT, URL, the resource we are pointing to (in this
case the customer with ID 1004) as well as the JSON body with the properties we want to update: the
customer’s name as well as their phone number.

The only last step is to press “Send Request” and if we get a 200 HTTP response, now we can check on
the RAD Server log that the request went through. Also, if we send a GET request for this particular
customer (we can do this on REST Debugger or in the browser) we will see that the data has been
successfully updated.

 The procedure is the same in case we want to create a new customer, although we will need to provide
all the required information in the body and change the method to POST.

37 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/c7KFvP8nF7Q

Chapter 4: REST Debugger -▶Watch the video

RAD Server log with the registered PUT request and the modified data

 Other features included with REST Debugger
 Even though it is not fully related with RAD Server, it is worth mentioning a very powerful feature that
REST Debugger offers. Once you have defined the URL, parameters etc use the button “copy
components” to generate in the clipboard all the required RAD studio components to just paste them in
any of your projects. In that way, you can prototype even faster UIs to access RAD Server or any other
third party API.

 In the GitHub repository of this chapter you’ll find a basic FMX example of this. All the components
required for access to the API were copied and pasted using the button “Copy Components”. To test it
out you just need to run first the RAD Server application and then run the FMX one and press “Send
Request”.

 Another important topic when it comes to REST API is authentication. If you need to authenticate to the
API you can use multiple methods under the “authentication” tab, Also, you can use the “Add
Parameters” button in the “parameters” tab to include specific parameters in your request, like for
example, an api-key parameter in the header.

38 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/c7KFvP8nF7Q

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

05
Using FireDAC Batch Move

and JSONWriter
Depending on the requirements for your projects or what technology you are more familiar with, RAD
Studio allows you to use even more tools to create your REST API.

FireDAC components are available to produce and consume a stream containing database metadata
and data encoded in JSON for a response from one of your RAD Server endpoints. This approach is
great if your client applications are going to be VCL or FMX. You can use MemoryTables to
automatically map all the database information and metadata to map it automatically. Other client
applications that use languages, like JavaScript, could have a problem dealing with the database
information and data that would be included in the response, but RAD Studio provides a way to
generate clean JSON that JavaScript or other languages would expect to receive.

 Returning JSON Database Data Using a Memory Stream
FireDAC includes components to access a database table information and produce the result as a JSON
string. Create a RAD Server application with a resource module. Add a FDConnection component and
connect it with the InterBase sample Employee.gdb database. Add a FDQuery component and set the
EmployeeQuery SQL string to select * from employee. Add a FDStanStorageJSONLink component to
facilitate creating the JSON.

39 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

RAD Server project's resource module

When building a RAD Server Delphi based application, a set of warnings may appear and a dialog box
will pop-up to allow the application package to be compatible with other installed packages. Clicking
the OK button will add the required package files to the requires section in the project. For C++Builder
the packages can be added manually (right mouse click on the Requires node in the project manager
window and select Add Reference… from the pop-up menu).

Delphi RAD Server FireDAC project C++ RAD Server FireDAC project

💡
tip

You’ll find these files in the C:\Program Files (x86)\Embarcadero\Studio\<XX>.0\lib for
each of your target platforms.

40 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

Here is the RAD Server Get method implementation that uses a memory stream to send the JSON
response with employee table data.

Delphi:

procedure TEmpfiredacResource1.Get(const AContext: TendpointContext;

const ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

var

mStream: TMemoryStream;

begin

mStream := TMemoryStream.Create;

AResponse.Body.SetStream(mStream,'application/json', True);

EmployeeQuery.Open;

EmployeeQuery.SaveToStream(mStream, sfJSON);

end;

C++:

void TFireDACResource1::Get(TEndpointContext* Acontext,

TEndpointRequest* ARequest, TEndpointResponse* AResponse)

{

TMemoryStream* mStream = new TMemoryStream;

AResponse->Body->SetStream(mStream,"application/json", True);

EmployeeQuery->Open();

EmployeeQuery->SaveToStream(mStream, sfJSON);

}

Use a browser and the URL http://localhost:8080/FireDAC to get the response containing the JSON
data for the database’s employee table. The JSON contains much more information than just the data.
Also included in the response is metadata information about the table, columns, types, etc.

41 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

Browser window containing the JSON response

This is definitely not the simple column and value JSON that other languages could consume without
parsing the response using code, but it can become very handy if your clients are going to be developed
with RAD Studio.

 Using FireDAC’s BatchMove, BatchMoveDataSetReader and
BatchMoveJSONWriter
For a complex database, using approaches like those mentioned in the previous chapter and above
would involve writing a lot more code. Taking advantage of FireDAC’s FDBatchMove,
FDBatchMoveDataSetReader and FDBatchMoveJSONWriter components greatly simplifies the creation
of the JSON response.

We are going to upgrade the same project we have created and add the components FDBatchMove,
FDBatcMoveDataSetReader and FDBatchMoveJSONWriter to the resource module.

42 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

Resource module with FireDAC Query, BatchMove, DataSetReader and JSONWriter

Set the FDBatchMoveDataSetReader’s DataSet property to EmployeeQuery.

We are going to create a new endpoint named GetBatchMove.

Delphi:

procedure TEmployeeResource1.GetBatchMove(const AContext: TendpointContext;

const ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

begin

FDBatchMoveJSONWriter1.JsonWriter := AResponse.Body.JSONWriter;

FDBatchMove1.Execute;

end;

C++:

void TEmployeeResource1::GetBatchMove(TEndpointContext* Acontext,

TEndpointRequest* ARequest, TEndpointResponse* AResponse)

{

FDBatchMoveJSONWriter1->JsonWriter = AResponse->Body->JSONWriter;

FDBatchMove1->Execute();

}

Calling the GET method using the URL http://localhost:8080/BatchMove returns the JSON data result:

43 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

Browser with JSON result using BatchMove

FDBatchMoveJSONWriter provides multiple options for formatting the JSON result regarding
DateFormats, endlines, writeNulls etc.

44 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4

Chapter 5: Using FireDAC Batch Move and JSONWriter -▶Watch the video

BatchMoveJSONWriter DataDef sub-properties in the ObjectInspector

The FDBatchMove component also allows you to create mappings to setup source and destination
columns mapping and to get the current source record values.

The Mappings property may be filled:

● Manually at design or run times. This allows to specify custom mappings, conversion
expressions, etc.

● Automatically at Execute call, if it is empty. The source and destination columns matching
performed by the column names. If a destination column has no corresponding source column,
then the destination column will be excluded from mapping and will be not filled at data
movement.

 See Also
● Marco Cantu blog: DataSet Mapping to JSON - RAD Server web service Delphi example
● FireDAC.Comp.BatchMove.TFDBatchMove
● FireDAC.Comp.BatchMove.JSON.TFDBatchMoveJSONWriter
● Readers and Writers JSON Framework
● FireDAC.TFDBatchMove Sample
● RTL.JSONWriter

45 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/Rs3QpUGjrW4
http://blog.marcocantu.com/blog/2017-december-dataset-mapping-json.html
http://docwiki.embarcadero.com/Libraries/en/FireDAC.Comp.BatchMove.TFDBatchMove
http://docwiki.embarcadero.com/Libraries/en/FireDAC.Comp.BatchMove.JSON.TFDBatchMoveJSONWriter
http://docwiki.embarcadero.com/RADStudio/en/Readers_and_Writers_JSON_Framework
http://docwiki.embarcadero.com/CodeExamples/en/FireDAC.TFDBatchMove_Sample
http://docwiki.embarcadero.com/CodeExamples/en/RTL.JSONWriter

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

06
JSONValue, JSONWriter and

JSONBuilder
RAD Server provides support for handling JSON data that can be consumed by different programming
languages and tools. Creating a JSON string, transmitting the string as a response, and having the client
application code process the return is okay for smaller amounts of data. Imagine how large a JSON
array response would be for an entire database or a complex data structure? RAD Studio provides three
main frameworks for working with JSON data. This chapter covers a few of the many ways RAD Server
applications can return JSON to a calling application.

 Frameworks for Handling JSON Data
RAD Studio provides multiple frameworks to handle JSON data. The three most common are:

● JSON Objects Framework – creates temporary objects to read and write JSON data.

● Readers and Writers JSON Framework – allows you to read and write JSON data directly.

● JSONBuilder – using writers, create complex structures in a more maintainable way.

The JSON objects framework requires the creation of a temporary object to parse or generate JSON
data. To read or write JSON data, you have to create an intermediate memory object such as
TJSONObject, TJSONArray, or TJSONString before reading and writing the JSON.

The Readers and Writers JSON Framework allows applications to read and write JSON data directly to
a stream, without creating a temporary object. Not having to create a temporary object to read and
write the JSON provides better performance and improved memory consumption.

46 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

JSON Builder is a combination of the two previous ones. It was created to make your code more
readable and maintainable. It also follows a more modern approach where you can chain methods one
after another.

In the demo project of this chapter you will find 3 different endpoints that generate exactly the same
response but using these three frameworks available. Feel free to use in your projects whichever you
feel more comfortable with.

Same JSON response obtained on each endpoint

 Using JSONValue
Use the JSON Objects Framework to create JSON strings by assembling them in code. JSONValue is the
ancestor class for all the JSON classes used for defining JSON string, object, array, number, Boolean,
true, false, and null values. Included in the RAD Studio JSON implementation are the following classes
and methods:

TJSONObject – implements a JSON object. Methods in TJSONObject Include:

● Parse – method to parse a JSON data stream and store the encountered JSON pairs into a
TJSONObject instance.

● ParseJSONValue – method to parse a byte array and create the corresponding JSON value from
the data.

● AddPair method – Adds a new JSON pair to a JSON object.

● GetPair method – Returns the key-value pair that has the specified I index in the list of pairs of a
JSON object, or nil if the specified I index is out of bounds.

● GetPairByName method – returns a key-value pair, from a JSON object, that has a key part
matching the specified PairName string, or nil if there is no key matching PairName.

● SetPairs – Defines the list of key-value pairs that this JSON object contains.

47 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

● FindValue – Finds and returns a TJSONValue instance located at the specified JSON path.
Otherwise, returns nil.

● Get Value – Returns the value part from a key-value pair specified by the Name key in a JSON
object, or nil if there is no key that matches Name.

● Pairs – Accesses the Key-value pair that is located at the specified Index in the list of pairs of the
JSON object, or nil if the specified Index is out of bounds.

● GetCount – Returns the number of key-value pairs of a JSON object.

TJSONArray – Implements a JSON array. JSONArray methods include:

● Add – Adds a non-null value given through the Element parameter to the current element list.

● Get – Returns the element at the given index in the JSON array.

● Pop – Removes the first element from the JSON array.

● Size – Returns the size of the JSON array.

● ToBytes – Serializes the current JSON array content into an array of bytes.

● ToString – Serializes the current JSON array into a string and returns the resulting string.

Additional JSON classes include:

● TJSONString – Implements a JSON string.

● TJSONNumber – Implements a JSON number.

● TJSONBool – JSON Boolean value.

● TJSONTrue – Implements a JSON true value.

● TJSONFalse – Implements a JSON false value.

● TJSONNull – Implements a JSON null value.

 Example using JSON classes
The following GetJSON method of the demo project implements a Get endpoint that uses several of the
JSON classes to create, parse and display the results of JSONObjects and JSONArray.

Delphi:

procedure TTestResource1.GetJSON(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

begin

48 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

// create some JSON objects

var JSONRed := TJSONObject.Create;

JSONRed.AddPair('name', 'red');

JSONRed.AddPair('hex', '#ff0000');

JSONRed.AddPair('default', False);

JSONRed.AddPair('customId', TJSONNull.Create);

var JSONBlue := TJSONObject.Create;

JSONBlue.AddPair('name', 'blue');

JSONBlue.AddPair('hex', '#0000ff');

JSONBlue.AddPair('default', True);

JSONBlue.AddPair('customId', 653992);

// create an array and assign the previous objects to it

var JSONArray := TJSONArray.Create;

JSONArray.Add(JSONRed);

JSONarray.Add(JSONBlue);

// create an extra object that will contain the array of colors

var JSONObject := TJSONObject.Create;

JSONObject.AddPair('colors', JSONArray);

AResponse.Body.SetValue(JSONObject, True);

end;

C++:

void TTestResource1::GetJSON(TEndpointContext* AContext, TEndpointRequest* ARequest,

TEndpointResponse* AResponse)

{

// create some JSON objects

TJSONObject * JSONRed = new TJSONObject();

JSONRed->AddPair("color", "red");

JSONRed->AddPair("hex", "#ff0000");

JSONRed->AddPair("default", True);

JSONRed->AddPair("customId", new TJSONNull());

TJSONObject* JSONBlue = new TJSONObject();

JSONBlue->AddPair("color", "blue");

JSONBlue->AddPair("hex", "#0000ff");

JSONBlue->AddPair("default", False);

JSONBlue->AddPair("customId", 653992);

// create an array and assign the previous objects to it

TJSONArray* JSONArray = new TJSONArray();

JSONArray->Add(JSONRed);

JSONArray->Add(JSONBlue);

// create an extra object that will contain the array of colors

TJSONObject* JSONObject = new TJSONObject();

JSONObject->AddPair("colors", JSONArray);

49 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

AResponse->Body->SetValue(JSONObject, True);

}

 Using JSONWriter
Using JSONWriter simplifies RAD Server application development to craft custom JSON that delivers
data for programming language clients to consume. Use JSONWriter to start your JSON object, write a
property name and a value, keep writing properties and values until you end the JSON object.

 Example using JSONWriter
Here is an implementation of a Get endpoint that returns data using JSONWriter’s WriteStartArray,
WriteStartObject, WritePropertyName, WriteValue, WriteEndObject, WriteEndArray methods. The
AResponse argument has a built in JSONWriter that is very handy to create more complex structures
directly on the response.

Delphi:

procedure TTestResource1.GetJSONWriter(const AContext: TEndpointContext; const

ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

begin

// to avoid typing AResponse.Body.JSONWriter on every line we store it in a variable

var Writer := AResponse.Body.JSONWriter;

// start the JSON object

Writer.WriteStartObject;

Writer.WritePropertyName('colors');

// start the JSON Array

Writer.WriteStartArray;

Writer.WriteStartObject;

Writer.WritePropertyName('name');

Writer.WriteValue('red');

// add WritePropertyName and WriteValue statements as often as needed

Writer.WritePropertyName('hex');

Writer.WriteValue('#ff0000');

Writer.WritePropertyName('default');

Writer.WriteValue(False);

Writer.WritePropertyName('customId');

Writer.WriteNull;

Writer.WriteEndObject;

// write as many additional JSON objects as you need

Writer.WriteStartObject;

Writer.WritePropertyName('name');

Writer.WriteValue('blue');

Writer.WritePropertyName('hex');

50 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

Writer.WriteValue('#0000ff');

Writer.WritePropertyName('default');

Writer.WriteValue(True);

Writer.WritePropertyName('customId');

Writer.WriteValue(653992);

// end the JSON object

Writer.WriteEndObject;

// end the JSON array

Writer.WriteEndArray;

Writer.WriteEndObject;

end;

C++:

void TTestResource1::GetJSONWriter(TEndpointContext* AContext, TEndpointRequest*

ARequest, TEndpointResponse* AResponse)

{

// to avoid typing AResponse.Body.JSONWriter on every line we store it in a variable

TJsonTextWriter* Writer = AResponse->Body->JSONWriter;

// start the JSON object

Writer->WriteStartObject();

Writer->WritePropertyName("colors");

// start the JSON Array

Writer->WriteStartArray();

Writer->WriteStartObject();

Writer->WritePropertyName("name");

Writer->WriteValue("red");

// add WritePropertyName and WriteValue statements as often as needed

Writer->WritePropertyName("hex");

Writer->WriteValue("#ff0000");

Writer->WritePropertyName("default");

Writer->WriteValue(False);

Writer->WritePropertyName("customId");

Writer->WriteNull();

Writer->WriteEndObject();

// write as many additional JSON objects as you need

Writer->WriteStartObject();

Writer->WritePropertyName("name");

Writer->WriteValue("blue");

Writer->WritePropertyName("hex");

Writer->WriteValue("#0000ff");

Writer->WritePropertyName("default");

Writer->WriteValue(True);

Writer->WritePropertyName("customId");

51 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

Writer->WriteValue(653992);

// end the JSON object

Writer->WriteEndObject();

// end the JSON array

Writer->WriteEndArray();

Writer->WriteEndObject();

}

 Using JSONBuilder
 This framework is a JSONWriter wrapper that allows you to build JSON in a faster and more readable
way. It follows a fluent interface (also known as method chaining) approach that in case of very
complex JSON structures simplifies your code and makes it easier to maintain and read.

 In the same project example you will find another endpoint that uses a JSON Builder to create the
response. Let’s see the code:

 Delphi:

procedure TTestResource1.GetJSONBuilder(const AContext: TEndpointContext; const

ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

begin

var Writer := Aresponse.Body.JSONWriter;

// link the JSONWriter from the response to the builder

var Builder := TJSONObjectBuilder.Create(Writer);

try

Builder

.BeginObject

.BeginArray('colors')

.BeginObject

.Add('name', 'red')

.Add('hex', '#ff0000')

.Add('default', False)

.AddNull('customId')

.EndObject

.BeginObject

.Add('name', 'blue')

.Add('hex', '#0000ff')

.Add('default', True)

.Add('customId', 653992)

.EndObject

.EndArray

.EndObject;

finally

52 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

Builder.Free;

end;

end;

 C++:

void TTestResource1::GetJSONBuilder(TEndpointContext* AContext, TEndpointRequest*

ARequest, TEndpointResponse* AResponse)

{

TJsonWriter* Writer = AResponse->Body->JSONWriter;

// link the JSONWriter from the response to the builder

TJSONObjectBuilder* Builder = new TJSONObjectBuilder(Writer);

try {

Builder

->BeginObject()

->BeginArray("colors")

->BeginObject()

->Add("name", "red")

->Add("hex", "#ff0000")

->Add("default", False)

->AddNull("customId")

->EndObject()

->BeginObject()

->Add("name", "blue")

->Add("hex", "#0000ff")

->Add("default", True)

->Add("customId", 653992)

->EndObject()

->EndArray()

->EndObject();

} __finally {

delete Builder;

}

}

 You can find a very useful sample project provided with RAD Studio called fmWorkBench (although it’s
available only for Delphi). You can find it in the path:
C:\Users\Public\Documents\Embarcadero\Studio\<XX>.0\Samples\Object Pascal\RTL\Json

 See Also
● JSON
● Readers and Writers JSON Framework
● JSONBuilder
● WorkBench sample project

53 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M
http://docwiki.embarcadero.com/RADStudio/en/JSON
http://docwiki.embarcadero.com/RADStudio/en/Readers_and_Writers_JSON_Framework
https://docwiki.embarcadero.com/CodeExamples/en/RTL.JSONBuilder
https://docwiki.embarcadero.com/CodeExamples/en/RTL.JSON_Workbench_Sample

Chapter 6: Returning JSON using JSONValue and JSONWriter -▶Watch the video

● Tutorial: Using the REST Client Library to Access REST-based Web Services

54 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/DQukKQg0V2M
http://docwiki.embarcadero.com/RADStudio/en/Tutorial:_Using_the_REST_Client_Library_to_Access_REST-based_Web_Services

Chapter 7: Creating your own customized endpoints -▶Watch the video

07
Creating your own

customized endpoints
Until this chapter we have seen basic JSON structures: arrays, objects… with fairly simple URIs as well:
/customers, /sales… but it’s very common when it comes to REST API best practices to find
sub-resources URIs and also nested arrays/objects inside other objects in the JSON responses. In this
chapter we will talk about how to accomplish those kinds of structures with RAD Server as well as
creating your own GET, POST, PUT or DELETE methods.

 An example of good practices
 Even though you can structure your API the way you want, there are thousands of articles talking about
the best practices when it comes to standardization or REST API. At the end of the day it is up to you
how you want to structure your API, but it’s worth reading a bit to know the basics of these standards
and try to not reinvent the wheel.

 For example: when accessing a specific customer, we have learnt that we use the URI /customers/{id}
but what if we want to access the sales of that particular customer? A very common option would be to
define another endpoint like: /customers/{id}/sales. This endpoint will return the sales orders of the
specific customer defined by their id.

 This is considered good practice and is usually called nested resources or sub-resources. This defines a
hierarchical relationship between your endpoints that can help third-parties or your own dev team to
understand your API in an easier way.

55 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

 Avoiding APIs to be too chatty
 When developing an application it’s common to access a form/webpage and finding yourself needing
data from multiple endpoints. Let’s say that you access a sales order from a customer: You will probably
need the customer’s details, order information, shipping address, the lines of that order, maybe
payments, invoice… The list of requests can get quite long, and when it comes to REST APIs there is a
problem: requests are expensive. With this I don’t mean expensive not only for the server to handle all
these requests, but also the latency that the internet introduces to this equation. Each request will take
a few milliseconds to go back and forth and if we need to send 10 or even more requests to just access
one page in particular, there is a lot of room for improvement there. This is when nested JSON
responses make more sense.

Imagine that you can request RAD Server in only one request a summary of one customer with all their
sales. This could be equivalent to a classic master-detail relationship, but all returned in one request.
We will also see how we can accomplish this.

 Adding sub-resources
For sub-resources we can still use the same TEMSDatasetAdapter we have seen in previous chapters.
We only need to tweak a few things in the attributes and RAD Studio and FireDAC will do the rest for
us.

Using the same project we have used so far (with 2 queries: qryCUSOTMER, qrySALES) let’s modify the
SQL of qrySALES like this:

select * from SALES

where CUST_NO = :CUST_NO

{if !SORT}order by !SORT{fi}

And the attributes on top of the drsSALES EMSDatasetAdapter, let’s change the attributes for these
ones:

Delphi

[ResourceSuffix('customers/{CUST_NO}/sales')]

[ResourceSuffix('List', './')]

[ResourceSuffix('Get', './{PO_NUMBER}')]

[ResourceSuffix('Post', './')]

[ResourceSuffix('Put', './{PO_NUMBER}')]

[ResourceSuffix('Delete', './{PO_NUMBER}')]

dsrSALES: TEMSDataSetResource;

56 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

C++:

attributes->ResourceSuffix["dsrSALES"] = "customers/{CUST_NO}/sales";

attributes->ResourceSuffix["dsrSALES.List"] = "./";

attributes->ResourceSuffix["dsrSALES.Get"] = "./{PO_NUMBER}";

attributes->ResourceSuffix["dsrSALES.Post"] = "./";

attributes->ResourceSuffix["dsrSALES.Put"] = "./{PO_NUMBER}";

attributes->ResourceSuffix["dsrSALES.Delete"] = "./{PO_NUMBER}";

On the SQL statement we have just added a WHERE clause with a parameter that filters the sales of a
specific customer.

If we check the attributes, something more interesting is happening. RAD Server will automatically
inject the value from {CUST_NO} into the FireDAC query and will filter the sales of that customer. Also,
we needed to specify the rest of the methods (List, Get, Post etc) because now 2 keys are involved in
the same endpoints and it’s mandatory to specify the names of them to make it work. The good news is
that we can still use these endpoints to create, modify or delete specific sales as we would do with any
other endpoints created using an EMSDatasetAdapter.

 Adding nested data in a response (Master/Detail)
Now that we have our first sub-resource endpoint, let’s create a nested response with multiple values.
For this, we finally need to write some code.

Let’s create one published method in our TTestResource1 data module class.

Delphi:

published

[ResourceSuffix('./customers-details/{CUST_NO}')]

procedure GetCustomerDetails(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

// and it's implementation

procedure TTestResource1.GetCustomerDetails(const AContext: TEndpointContext; const

ARequest: TEndpointRequest;

const AResponse: TEndpointResponse);

begin

var lCustomerNo := ARequest.Params.Values['CUST_NO'].ToInteger;

// We use a parameter instead of concatenating the CustomerNo to avoid SQL injection

qryCUSTOMER.MacroByName('MacroWhere').AsRaw := 'WHERE CUST_NO = :CUST_NO';

qryCUSTOMER.ParamByName('CUST_NO').AsInteger := lCustomerNo;

qryCUSTOMER.Open;

57 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

try

if qryCUSTOMER.RecordCount = 0 then

AResponse.RaiseNotFound('Not found', 'Customer ID not found');

qrySALES.ParamByName('CUST_NO').asInteger := lCustomerNo;

qrySALES.Open;

var lFields := ExcludeMasterFieldFromFields(qrySALES);

try

AResponse.Body.SetValue(

SerializeMasterDetail(qryCUSTOMER, qrySALES, 'SALES', lFields)

, True);

qrySALES.Close;

finally

lFields.Free;

end;

finally

qryCUSTOMER.Close;

qryCUSTOMER.MacroByName('MacroWhere').Clear;

end;

end;

C++:

attributes->ResourceSuffix["GetCustomerDetails"] = "./customers-details/{CUST_NO}";

// and it's implementation

void TTestResource1::GetCustomerDetails(TEndpointContext* AContext, TEndpointRequest*

ARequest, TEndpointResponse* AResponse)

{

int lCustomerNo = ARequest->Params->Values["CUST_NO"].ToInt();

// We use a parameter instead of concatenating the CustomerNo to avoid SQL

injection

qryCUSTOMER->MacroByName("MacroWhere")->AsRaw = "WHERE CUST_NO = :CUST_NO";

qryCUSTOMER->ParamByName("CUST_NO")->AsInteger = lCustomerNo;

qryCUSTOMER->Open();

try {

if (qryCUSTOMER->RecordCount == 0) {

AResponse->RaiseNotFound("Not found", "Customer ID not found");

}

qrySALES->ParamByName("CUST_NO")->AsInteger = lCustomerNo;

qrySALES->Open();

TStringList* lFields = ExcludeMasterFieldFromFields(qrySALES);

58 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

try {

AResponse->Body->SetValue(

SerializeMasterDetail(qryCUSTOMER, qrySALES, "SALES",

lFields),

true

);

} __finally {

lFields->Free();

}

} __finally {

qryCUSTOMER->Close();

qryCUSTOMER->MacroByName("MacroWhere")->Clear();

}

}

We can see in this simple code that we just retrieve the details of the specific customer ID we are
getting from the URL using a macro, and passing it as a parameter to the same qrySALES we were
using already. No extra queries required.

Although using components like EMSDatasetAdapter helps a lot in a low-code approach, sometimes
we need specific requirements and we need to code our own implementations. As we have seen in
previous chapters, we can use JSONWritters to customize our response as we please.

If we check the code of this example, on every incoming request we have access to the ARequest and
AResponse arguments to access all the required information and build our own responses. In this
example we use the method “WriteStartObject” to create a new object, then use two methods from a
TQuerySerializer class (more about this later) and then we end the object.

There are multiple useful methods and properties we can use with JSONWriters and JSONReaders that
will make your coding experience much easier. I strongly encourage you to check the documentation to
learn all the available features.

Now you are probably asking yourself: But what are those 2 methods: ExcludeMasterFieldFromFields
and SerializeMasterDetail? These two methods have been coded for this particular demo example,
but you have access to them in the GitHub repository demos, and of course, feel free to use the code in
your projects as well. Their task is very well documented in the methods but summing up, they just
convert a master/detail relationship to a JSON object with the detail query inserted in as a JSON array in
the main JSON object. ExcludeMasterFieldFromFields could be not necessary, but for avoiding
redundant data, we exclude from the detail the MasterField.

💡
tip

Check out the unit Data.DBJson It includes multiple classes to help you out
converting Datasets to JSON and vice versa. In this example we have used the class
TDataSetToJSONBridge that allows us to serialize these much faster and granularly.

59 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw
https://docwiki.embarcadero.com/RADStudio/en/Readers_and_Writers_JSON_Framework

Chapter 7: Creating your own customized endpoints -▶Watch the video

Delphi:

// given 2 queries with a master/detail relationship, returns 1 JSON object with a

nested array with the detail query

function TTestResource1.SerializeMasterDetail(AMasterDataset: TFDQuery;

ADetailDataset: TFDQuery; APropertyName: string; AFields: TStringList = nil):

TJSONObject;

begin

var lBridge := TDataSetToJSONBridge.Create;

try

// takes the current record of the master query and converts it to a JSON object

lBridge.Dataset := AMasterDataset;

lBridge.IncludeNulls := True;

// specifies that the we only require to process the current record

lBridge.Area := TJSONDataSetArea.Current;

// adds the master record as an object in the JSON result

Result := TJSONObject(lBridge.Produce);

// in case we passed a list of fields we want to export we assign them to the

bridge, otherwise the default behaviour is exporting all fields in the query

if Assigned(AFields) then

lBridge.FieldNames.Assign(AFields);

// the same bridge is being reused, but now the detail dataset is being assigned

lBridge.Dataset := ADetailDataset;

// in this case all the records from the query will be processed

lBridge.Area := TJSONDataSetArea.All;

// stores the detail array in a temp array to add it afterwards in the main object

var lJSONarray := TJSONArray(lBridge.Produce);

// the array is being added to the main object as an array with the propertyname

passed in the argument

Result.AddPair(APropertyName, lJSONarray);

finally

lBridge.Free;

end;

end;

// if a query has a masterfield assigned, it retuns a stringlist with all the fields

but that masterfield

function TTestResource1.ExcludeMasterFieldFromFields(ADataset: TFDQuery): TStringList;

begin

var lMasterField := ADataset.MasterFields;

Result := TStringList.Create;

Result.Assign(ADataset.FieldList);

var i := Result.IndexOf(lMasterField);

if i > -1 then

Result.Delete(i);

end;

60 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

C++:

// given 2 queries with a master/detail relationship, returns 1 JSON object with a

nested array with the detail query

TJSONObject* TTestResource1::SerializeMasterDetail(TFDQuery* AMasterDataset, TFDQuery*

ADetailDataset, System::UnicodeString APropertyName, TStringList* AFields)

{

TDataSetToJSONBridge *lBridge = new TDataSetToJSONBridge;

try {

// takes the current record of the master query and converts it to a JSON

object

lBridge->Dataset = AMasterDataset;

lBridge->IncludeNulls = True;

// specifies that the we only require to process the current record

lBridge->Area = TJSONDataSetArea::Current;

TJSONObject* lJSONObject = new TJSONObject;

// adds the master record as an object in the JSON result

lJSONObject = (TJSONObject*) lBridge->Produce();

// in case we passed a list of fields we want to export we assign them to

the bridge, otherwise the default behaviour is exporting all fields in the query

if (AFields != NULL) {

lBridge->FieldNames->Assign(AFields);

}

// the same bridge is being reused, but now the detail dataset is being

assigned

lBridge->Dataset = ADetailDataset;

// in this case all the records from the query will be processed

lBridge->Area = TJSONDataSetArea::All;

TJSONArray* lJSONArray = new TJSONArray;

// stores the detail array in a temp array to add it afterwards in the

main object

lJSONArray = (TJSONArray*) lBridge->Produce();

// the array is being added to the main object as an array with the

propertyname passed in the argument

lJSONObject->AddPair(APropertyName, lJSONArray);

return lJSONObject;

} __finally {

lBridge->Free();

}

}

// if a query has a masterfield assigned, it retuns a stringlist with all the fields

but that masterfield

TStringList* TTestResource1::ExcludeMasterFieldFromFields(TFDQuery* ADataset)

{

System::UnicodeString lMasterField = ADataset->MasterFields;

61 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

TStringList* fields = new TStringList;

fields->Assign(ADataset->FieldList);

int i = fields->IndexOf(lMasterField);

if (i > -1) {

fields->Delete(i);

}

return fields;

}

📃
note

In a real project it would make more sense to abstract these methods in another
class/unit because they can be easily reusable, but for simplicity we have kept them in
this same DataModule.

 Testing the new implementations
Let’s run the demo project and access the URL http://localhost:8080/customers/1040/sales/

62 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw
http://localhost:8080/customers/1040/sales/

Chapter 7: Creating your own customized endpoints -▶Watch the video

Accessing sales from a specific customer using sub-resources approach

We are now filtering the sales of the customer 1004, but if we want to access/modify/delete one sale in
particular, we can also access through this same URI. We just need to add to the end the order Id, for
example: http://localhost:8080/test/customers/1004/sales/V91E0210

Let’s access now the other endpoint we defined: http://localhost:8080/test/customers-details/1004

63 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw
http://localhost:8080/test/customers/1004/sales/V91E0210
http://localhost:8080/test/customers-details/1004

Chapter 7: Creating your own customized endpoints -▶Watch the video

Accessing an endpoint with sub-resources (Customer and their sales)

In the same request we are getting all the sales from the specific customer which means that instead of
two calls to RAD Server, we got all the information we needed in just one. Obviously these kind of
requests can get more complex with multiple nested levels etc.

📃
note

In the github repository demo project associated with this chapter you will find an
extra endpoint to access a list of customers and their associated sales. Instead of
filtering one in particular we will obtain all of them. Notice that most of the code has
been reused making it very simple to implement in further developments.

64 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

 Creating custom GET, POST, PUT, DELETE methods
 So far we’ve seen how to create GET custom methods, but in some scenarios we will need to use other
verbs like POST, PUT and DELETE. To code this kind of implementation we just need to start the
method name by the verb we want to use IE: “procedure PutMethodName(..”. As you have probably
seen in the previous examples, all the methods que customized started with “Get”: if we change that
for, let’s say, “Post” we will be defining a POST method. Let’s see an example:

 Delphi:

published

[ResourceSuffix('./custom/{ID}')]

procedure PostCustomEndPoint(const AContext: TEndpointContext; const ARequest:

TEndpointRequest;

const AResponse: TEndpointResponse);

// and it's implementation

procedure TTestResource1.PostCustomEndPoint(const AContext: TEndpointContext;

const ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

var

lId: integer;

lName: string;

lJSON: TJSONObject;

begin

if not(ARequest.Body.TryGetObject(lJSON) and lJSON.TryGetValue<string>('name',

lName)) then

AResponse.RaiseBadRequest('Bad request', 'Missing data');

lID := ARequest.Params.Values['ID'].ToInteger;

// Add your extra business logic

lName := 'The name is ' + lName;

AResponse.Body.JSONWriter.WriteStartObject;

AResponse.Body.JSONWriter.WritePropertyName('id');

AResponse.Body.JSONWriter.WriteValue(lId);

AResponse.Body.JSONWriter.WritePropertyName('name');

AResponse.Body.JSONWriter.WriteValue(lName);

AResponse.Body.JSONWriter.WriteEndObject;

end;

 C++:

attributes->ResourceSuffix["PostCustomEndPoint"] = "./custom/{ID}";

// and it's implementation

65 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

void TTestResource1::PostCustomEndPoint(TEndpointContext* AContext, TEndpointRequest*

ARequest, TEndpointResponse* AResponse)

{

TJSONObject *lJSON;

System::UnicodeString lName;

if (!ARequest->Body->TryGetObject(lJSON) && lJSON->TryGetValue("name",lName)) {

AResponse->RaiseBadRequest("Bad Request", "Missing Data");

}

int lID = ARequest->Params->Values["ID"].ToInt();

// Add your extra business logic

lName = "The name is " & lName;

AResponse->Body->JSONWriter->WriteStartObject();

AResponse->Body->JSONWriter->WritePropertyName("id");

AResponse->Body->JSONWriter->WriteValue(lID);

AResponse->Body->JSONWriter->WritePropertyName("name");

AResponse->Body->JSONWriter->WriteValue(lName);

AResponse->Body->JSONWriter->WriteEndObject();

}

 Now we have available a new extra endpoint ./custom/{id}. If we send a POST request from REST
Debugger adding in the body the expected “name” property we will get this.

66 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw

Chapter 7: Creating your own customized endpoints -▶Watch the video

Response from the custom POST method

 Handling response errors
 As we could see in the previous example of a customized POST endpoint, we raised an error in case we
didn’t get all the data we expected. RAD Server offers a built-in solution to raise and return the most
common errors straight away from the AResponse object. You can find more detailed information about
the available errors in this link.

See also
● JSON Writers and Readers
● REST API Best practices

67 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/oBPzvrRK1Kw
https://docwiki.embarcadero.com/Libraries/en/EMS.ResourceAPI.TEndpointResponse
https://docwiki.embarcadero.com/RADStudio/en/Readers_and_Writers_JSON_Framework
https://swagger.io/resources/articles/best-practices-in-api-design/

Chapter 8: Accessing the built-in analytics -▶Watch the video

08
Accessing the built-in

analytics
The RAD Server Console is a service that provides a pre-configured web application which displays
multiple data as well as analytics from the RAD Server Engine. It allows you to have a more in-depth
view of the activity on your RAD Server instances and make decisions based on real data. Analyze user,
API, and services activity to gain insight into how your application is being utilized.

Main Characteristics

The RAD Server Console accesses the database server in read-only mode.

● It gives feedback on the API calls with statistics from the RAD Server Engine resources: Users,
Groups, Installations, modules and its resources.

● You can use the console as a stand-alone application for testing purposes or set up the console
on a Microsoft IIS Server for a production environment.

● Note: Microsoft IIS Server is not available on Linux. You can use Apache for a production
environment on Linux

● The RAD Server Console offers analytics for new resources by extending the functionality of the
server.

● The RAD Server Console offers analytics for the registered RAD Server users.
● You can export and save the analytics data to a .csv file in your system.

68 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/uDntdmokIyE

Chapter 8: Accessing the built-in analytics -▶Watch the video

Accessing the RAD Server Console

Go back to the RAD Server Development Server and click the Open Console button. This will start the
RAD Server Development Console Server running automatically on port 8081 and It will also open a
browser with the analytics console login window.

RAD Server Development Console Server UI

📃
note

If the default port 8081 is being used by your computer, you just need to change
8081 for any port available on your machine, press “Start” and then “Open Browser”.

RAD Server Console user login screen

 To access the console, RAD Server comes with default credentials preconfigured (leave the tenant info
empty):

69 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/uDntdmokIyE

Chapter 8: Accessing the built-in analytics -▶Watch the video

user: consoleuser
password: consolepass

⚠
warning

RAD Server provides a default user and password to access the console. Remember
to change these credentials in the emsserver.ini configuration file (check the chapter
about this configuration file for more detailed information).

RAD Server Console home page

After logging in you’ll see a graphics view of the RAD Server console single page JavaScript app with
menu on the left and content on the right. The menu provides information of users, groups, device
installations, EdgeModules, Resource Modules and Analytics. Here is the screen that shows a list of
users and their information including when the user was created and when the user information was
last modified.

RAD Server Console users table

70 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/uDntdmokIyE

Chapter 8: Accessing the built-in analytics -▶Watch the video

Clicking on the Analytics menu item opens a menu to select from a range of analytics including total
clients, API calls, API endpoints called, and more. Analytics can be chosen by day, month and year. The
analytics can also be filtered by user, group, etc and specific endpoints. Analytics results can also be
saved to a .CSV file for additional processing by external applications.

💡
tip

These analytics provide great information for the decision making process and
auditories. Seeing when your services are more or less used for planning updates, or
seeing which endpoints are rarely used are just examples of very valuable insights.

The following chart shows an API calls chart for a selected month.

RAD Server Console Ext JS API calls analytics page

71 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/uDntdmokIyE

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

09
Deploying RAD Server

Previously, the first RAD Server applications were tested using the development versions of the RAD
Server (EMSDevServer.exe) and Console (EMSDevConsole.exe) applications. This chapter covers the
multiple platforms where you can deploy RAD Server in production. If you are interested in RAD Server
Lite, jump to the next chapter.

⚠
warning

When a new bpl or dcp resource is compiled, this won’t be included in the “export”
folder of your project (where binaries usually go). These resources will be created by
default in your Embarcadero Studio installation path:
C:\Users\Public\Documents\Embarcadero\Studio\<XX>.0\”Bpl or Dcp”
Inside the Bpl or Dcp folder there are platform specific ones .

Where can RAD Server be deployed
RAD Server is compatible with the platforms Windows, Linux and Docker. Although conceptually
speaking the services required for each platform are the same, there are some differences that we will
see in this chapter, but first, let’s talk about the similarities and how RAD Server works under the hood.

72 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

Using the installers from GetIt
If you are deploying your RAD Server application on Windows or Linux, the fastest way to do the
installation is using the installers that you can download from GetIt. You just need to search “RAD
Server” and you will find these two:

RAD Server installer from GetIt

Once the “installation” has finished (even though it’s more a download) you can find the installers in the
path: C:\Users\<YourUserName>\Documents\Embarcadero\Studio\<XX>.0\CatalogRepository and copy
the whole folder to your production machine. The folder contains all the required files for a full
installation of RAD Server (InterBase installer included).

Before executing the installer in your production environment, you must have installed IIS or Apache so
the installer can configure all the requirements accordingly.

The installer will guide you through the different options you need to install.

📃
note

During the installation you’ll be requested to provide a valid license for InterBase.
Use your EDN account and the RAD Server serial number to register the InterBase
Instance.

Prerequisites to deploy RAD Server manually
This chapter is focused on understanding all the parts that need to be installed or configured to deploy
RAD Server. Even if you use the installer, it’s important to understand all the requirements for a better
debugging and problem solving. Also, if you need to update your RAD Server to a newer version, you
won’t need to reinstall the whole application and updating just a few dlls and bpls/so should be
enough.

These are the mandatory requirements for a RAD Server installation working in production:

● InterBase Server engine
● RAD Server license

73 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

● RAD Server installation
● Web Server (IIS 7+ or Apache 2.4+)
● Resource files compiled with RAD Studio
● Configuring the EMSServer.ini file

Regardless the platform you choose to deploy, you will need to install/configure all these. For example,
on Windows you will need to configure Microsoft’s Web Server IIS or Apache for Windows and on
Linux you will need Apache. It’s important to understand that RAD Server is not an executable as such
(apart from the Lite version, but more on that later). Resources are compiled in the form of BPLs for
Windows or SO libraries for Linux. That’s why we need a web server to access those resources.

When it comes to InterBase, a database instance needs to be used by RAD Server internally. A lot of
information is saved (statistics, users, roles etc) and that’s why it requires its own database to store all
that information.

The fact that RAD Server uses InterBase internally doesn’t imply that you must use this database
engine for your own data. FireDAC connects to a wide range of databases and you can choose
whichever suits your needs.

📃
note

In case that InterBase is your database of choice and it’s going to be deployed in the
same machine, you’ll need two instances running on different ports. It’s common
practice to keep the port 3050 for your own database instance and install RAD
Server InterBase instance in another port. IE: 3051. The same instance can’t be used
because RAD Server uses its own encryption system.

Deploying on Windows manually

InterBase Server engine
Download the latest InterBase installer for Windows from https://my.embarcadero.com and install it in
your production machine. You can follow this tutorial in case you’ve never installed it before. Here you
can also find RAD Server Database Requirements for a Production Environment on Windows.

Specific details for the installation:

● Choose “Server and Client”
● Allow running multiple instances of InterBase on the same machine
● Change the default port suggested to 3051
● Name the instance RADServer (instead of the default gds_db)
● For registering InterBase, use the same RAD Server serial number you were provided and your

EDN account.

Once the installation has finished, you need to start the RADServer instance of InterBase server.
Choose Start | Programs | Embarcadero InterBase | 64-bit instance = RADServer | InterBase Server

74 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://my.embarcadero.com
https://docwiki.embarcadero.com/InterBase/2020/en/Installation,_Registration,_and_Licensing_Information#Installation_and_Registration
https://docwiki.embarcadero.com/RADStudio/en/RAD_Server_Database_Requirements_for_a_Production_Environment_on_Windows

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

Manager. If you want InterBase to run as a service (the default) check that box. If you want InterBase to
run when your computer starts, click the Automatic radio button. Then click the Start button.

InterBase Manager 64-bit for RADServer

💡
tip

You can find InterBase Manager in your programs list under “Embarcadero InterBase”
or in the path where you installed it, under the folder “.\bin\IBMgr.exe” and specifying
the instance name IE: “.\IBMgr.exe RADServer”. Another option is simply using the
windows search and type “InterBase Manager”.

RAD Server installation
For installing RAD Server on a Windows machine we need to follow very similar steps to when we
configured it in our dev machine. Most of the files that will be required for this process can be found in
these folders:

● C:\Program Files (x86)\Embarcadero\Studio\<XX>.0\bin64

● C:\Program Files (x86)\Embarcadero\Studio\<XX>.0\redist\win64

In the docwiki there is a very detailed tutorial about how to install RAD Server on Windows. You can
access it here. Nevertheless, we will explain the basic steps here:

Follow these steps to prepare the production server to test and use the InterBase RAD Server instance
and EMSDevServer.EXE to create the RAD Server database and configuration file.

1. Copy the 64-bit EMSDevServer.exe to the production server in a folder called c:\installs\EMS

75 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://docwiki.embarcadero.com/RADStudio/en/Configuring_Your_RAD_Server_Engine_or_RAD_Server_Console_on_Windows#Configuring_Your_EMS_Environment_for_the_First_Time

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

2. Copy the required files from the RAD Studio Redist/win64 folder to the production server in a
folder called c:\Redist

3. Edit the system path environment variable on the production server to add the c:\Redist and
c:\Program Files\InterBase\bin folders.

Add two folders to your system path

4. Copy the EMS template and web resources files on the development computer from C:\Program
Files (x86)\Embarcadero\Studio\<XX>.0\ObjRepos\en\EMS to the production server folder called
c:\installs\ObjRepos\EMS (EMSDevServer.EXE will look for the template and web resource files
in an ObjRepos\EMS sub-folder under the same parent folder you place the EMSDevServer
folder)

5. Make sure that the InterBase server with RAD Server license is started on the production server.
6. Run the EMSDevServer.exe (as you did in the first RAD Server development configuration) to

setup the production RAD Server configuration file and InterBase RAD Server database. The
following screens show the steps.

76 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

RAD Server Setup Wizard - set connection
parameters for RAD Server

RAD Server Setup Wizard - choose to generate
sample data

RAD Server Setup Wizard - set connection
parameters for RAD Server

RAD Server Setup Wizard - review the files and
registry key that will be created

77 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

RAD Server Development Server is running

The RAD Server wizard will create two files in the default folder under the Public Documents folder.

RAD Server Setup Wizard - two files created in a public documents folder

Web Server (IIS or Apache)
If you deploy on Windows you can use the web server that Microsoft provides with Windows a.k.a. IIS
or you can also use Apache for Windows. In this link you can see a detailed guide about not only the
files you need to copy to your production environment but also how to configure IIS or Apache on a
Windows machine.

If you choose IIS, Microsoft has different versions of it and the installation process of the service can
differ a bit. If you don’t have previous experience with this service, you can find information in this link.

The last step will be copying our compiled resources. Go to the end of this chapter to see how to do it.

💡
tip

If you use on Server Manager the “add role or feature” option for adding Web Server
(IIS), it’s mandatory to install “ISAPI Extensions” and “ISAPI Filters” under the
“Application Development” section

78 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://docwiki.embarcadero.com/RADStudio/en/Installing_the_RAD_Server_or_the_RAD_Server_Console_on_a_Production_Environment_on_Windows
https://learn.microsoft.com/en-us/iis/

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

Deploying on Linux manually
Deploying RAD Server and your applications to a Linux server provides the following options:

● To create a Stand-alone RAD Server, see the RAD Server Installation section

● To create RAD Server for Apache, see the Setting Up RAD Server for Apache section

Compatible Distros
RAD Server officially supports Ubuntu 18+ and RHEL 7+. This doesn’t mean that it can’t be installed in
other distros like RockyLinux, Debian etc but the internal testing is always done with the officially
supported ones.

Installing InterBase Server engine
Download the latest InterBase installer for Linux from https://my.embarcadero.com. Inside the zip file
you’ll find the installer. Here you can also find RAD Server Database Requirements for a Production
Environment on Linux.

Once you have unzipped the file you downloaded, assign execution permissions to the installer and
execute it:

chmod +x install_linux_x86_64.sh

sudo ./install_linux_x86_64.sh

Specific details for the installation:

● Choose “Server and Client”
● Allow running multiple instances of InterBase on the same machine
● Change the default port suggested to 3051
● Name the instance RADServer (instead of the default gds_db)
● Install Folder: /opt/interbase

💡
tip

InterBase installer will detect automatically if your Linux installation has Desktop
environment or not. In case you want to force Console mode execute the installer use
this argument:
sudo ./install_linux_x86_64.sh -i Console

📃
note

You can define the name for the instance and path with the name you prefer. If you
do, keep in mind to reference to those accordingly during the configuration process.

79 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://my.embarcadero.com
https://docwiki.embarcadero.com/RADStudio/en/RAD_Server_Database_Requirements_for_a_Production_Environment_on_Linux
https://docwiki.embarcadero.com/RADStudio/en/RAD_Server_Database_Requirements_for_a_Production_Environment_on_Linux

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

Registering and starting InterBase Server
To launch the registration wizard execute the command:

sudo /opt/interbase/bin/LicenseManagerLauncher -i Console

This will launch the license wizard. For console mode, we recommend option 2 “Direct register” where
you’ll be able to specify your RAD Server serial number plus your EDN account. The assistant will do
the rest of the work and will verify your license connecting to the Embarcadero servers.

If you want to verify now if the license has been loaded correctly, you can use option 1 in the previous
menu “List license” to confirm everything went as expected.

The InterBase instance is already installed and licensed but it needs to be started. For that, we need to
enter the InterBase console executing this command

sudo /opt/interbase/bin/ibmgr -start

To simplify connecting other applications and services to InterBase databases the simplest approach is
to create a symbolic link to the InterBase library and point it to /usr/lib. This will avoid you to copy the
lib to every service that needs an InterBase connection.

sudo ln -s /opt/interbase/lib/libgds.so.0 /usr/lib/libgds.so

 Running InterBase as a Service
InterBase can also be set up as a service so that it runs when Linux is started. Use the following
commands in a terminal window.

Access the “examples” folder in the path where you installed interbase and copy the ibserverd script file
to a version for the server instance you installed:

sudo cp ibserverd ibserverd_RADServer

Setup the automatic service launch by executing the above script as 'sudo' or 'root'.

sudo ./ibservice.sh -s /opt/interbase RADServer

80 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

The 2nd argument is the install folder, and the 3rd argument is the instance name. Now, when you
restart the system, the service should start automatically as long it is properly licensed.

Check to make sure InterBase is set to start as a service on next reboot or startup.

ps -ef | grep ibserver

When running InterBase as a service, the InterBase server starts automatically whenever the machine
is running in a multi-user mode.

If you prefer to create the service manually (or your Linux distribution uses a slightly different approach)
you can find detailed information about this setup in this link.

📃
note

To remove InterBase as a service, run:
sudo /opt/interbase/examples/ibservice.sh -r[emove]

Installing RAD Server
On the machine where you have RAD Studio installed you’ll find the RAD Server Linux installer in the
path: C:\Program Files (x86)\Embarcadero\Studio\<XX>.0\EMSServer

Copy those files to your Linux machine and execute the installer. You may need to give execution
permissions to it.

⚠
warning

Ensure that libcurl is installed. To install it use your distro package manager. IE for
Debian based: apt install libcurl4

The install shell script will create a directory, /usr/lib/ems, containing the EMSDevServerCommand,
EMSDevConsoleCommand along with several runtime library (.so) files required for the command files
to execute. You can also find a tutorial from the docwiki in this link with detailed information.

Once the installation has finished, run the EMSDevConsole in setup mode:

/usr/lib/ems/EMSDevConsoleCommand -setup

type start and press enter.

Specify the connection parameters by entering the following values:

● Server instance: type the following default instance name RADServer
● DB File Name: the default name is emsserver.ib

81 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://docwiki.embarcadero.com/InterBase/2020/en/Starting_and_Stopping_the_InterBase_Server_on_UNIX
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/Configuring_Your_RAD_Server_Engine_or_RAD_Server_Console_on_Linux

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

● DB File Directory: /user/lib/ems
● DB User Name: the default parameter is sysdba
● DB Password: the default parameter is masterkey
● Console User Name: the default value is consoleuser
● Console Password: the default value is consolepass

Type “n” if the configuration options are correct. The emsserver.ini and emsserver.ib files are created
and RAD Server starts execution on port 8080. The configuration file can always be manually edited.

Once the configuration process has finished, you can find the RADServer database in /usr/lib/ems and
the configuration files in /etc/ems.

Keeping the DevServer executed, let’s test now that we can access it correctly and we get a response.
Access http://<LinuxMachineIP>:8080/version.

Browser showing the output from calling the version endpoint

EMSDevServerCommand and EMSDevConsoleCommand can be used for developing and testing Linux
RAD Server applications without using Apache. The next step is to set up and test RAD Server and
Delphi/C++ compiled application modules to run in production mode on Linux and Apache.

💡
tip

In case you want to deploy RAD Server on Linux but also use InterBase as your
database of choice for your data, you can follow this tutorial.

 Setting Up RAD Server for Apache
Use the InterBase iSQL command (in the /opt/interbase/bin directory) to make sure that RAD Server will
be able to connect to the emsserver.ib database file.

sudo ./isql -user sysdba -pass masterkey localhost/RADServer:/usr/lib/ems/emsserver.ib

ISQL> SHOW VERSION;

ISQL> SHOW DATABASE;

ISQL> exit;

Configure the Apache HTTP Server to load the Apache RAD Server (libmod_emsserver.so) and Apache
RAD Server Console (libmod_emsconsole.so) modules. Even though Apache’s configuration is very

82 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://blogs.embarcadero.com/how-to-deploy-rad-server-and-interbase-on-the-same-linux-machine/

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

similar regardless of the Linux distro you are using, keep in mind that there are some differences
between RHEL and Debian based distributions.

📃
note

Check the documentation of your Linux distro to verify what’s the recommended way
to load modules as well as define location tags.

Add the following lines to load the RAD Server Apache server module (libmod_emsserver.so) and the
RAD Server Apache console module (libmod_emsconsole.so).

LoadModule emsserver_module /usr/lib/ems/libmod_emsserver.so

LoadModule emsconsole_module /usr/lib/ems/libmod_emsconsole.so

Add the Location tags to create a container where you can specify access control rules for a given URL.

<Location /radserver>

SetHandler libmod_emsserver-handler

</Location>

<Location /radconsole>

SetHandler libmod_emsconsole-handler

</Location>

To test that your RAD Server is correctly running, use a browser to bring up the RAD Server version
number accessing: http://<LinuxMachineIP>/radserver/version

The last step it will be copying our compiled resources. Go to the end of this chapter to see how to do it.

Deploying on Docker
The deployment of RAD Server in Docker is much simpler than using Windows and Linux. Embarcadero
has various images in dockerhub available for this platform.

You will find 2 images related with RAD Server: The only difference between these two is that one has
an InterBase Server Engine running inside the container and the other one assumes that the InterBase
Server required for running RAD Server will be hosted somewhere else.

💡
tip

InterBase Server is also compatible with Docker and Embarcadero provides an image
to containeraize it. Here’s the link to DockerHub.

83 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://hub.docker.com/r/radstudio/interbase

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

How these Docker images are built is fully open source and are publicly available on GitHub. This is just
one approach, but if you are comfortable enough with Docker, feel free to use these as a template and
adapt them to your specific needs.

There is plenty of information about how to deploy and customize these images in the DockerHub and
GitHub links underneath.

Option 1: PA-RADServer-IB
This image is what we could call “all batteries included”. Having InterBase built in makes things much
easier, but keep in mind that the first time you run this container you can’t do it in detach mode. A first
wizard needs to be executed for configuring the RAD Server license and a few extra details. Once
everything is set up, you can run it detached.

Another thing to keep in mind is that this container is very handy if you don’t have plans in scaling your
application and want to have everything in one place, but if you want to scale the application in the
future, maybe the best approach is to separate RAD Server from the InterBase Server and have them in
separated containers/machines.

DockerHub link

GitHub link

This image includes:

● InterBase Server
● PAServer
● RADServer required files
● Apache pre-configured

Option 2: PA-RADServer
This container will need to connect to an InterBase Server with a valid license of RAD Server installed,
otherwise it won’t work. It’s an ideal container in case that you want to scale your application and
deploy multiple instances connected to the same InterBase Server.

DockerHub link

GitHub link

This image includes:

● PAServer
● RADServer required files
● Apache pre-configured

💡
tip

Remember that for simple environments, you can use PAServer to upload your
resources updates straight to the container without the need of regenerating it.

84 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://hub.docker.com/r/radstudio/pa-radserver-ib
https://github.com/Embarcadero/pa-radserver-ib-docker
https://hub.docker.com/r/radstudio/pa-radserver
https://github.com/Embarcadero/pa-radserver-docker

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

Access this link for further information about deploying RAD Server on Docker.

Copying RAD Server modules compiled with RAD Studio
The process of deploying modules or required additional libraries to your production machine is nearly
identical regardless of the operating system you’ve chosen. For your own resources, you only need to
copy the .bpl/.so files to your production machine.

RAD Server application package files are compiled into folders depending on the project settings. The
default Delphi package output and C++ final output directories are:

● For Delphi:

◦ 32-bit Windows - C:\Users\Public\Documents\Embarcadero\Studio\<XX>.0\Bpl

◦ 64-bit Windows - C:\Users\Public\Documents\Embarcadero\Studio\<XX>.0\Bpl\Win64

◦ Linux - C:\Users\Public\Documents\Embarcadero\Studio\<XX>.0\Bpl\Linux64

● For C++ all RAD Server application package files are compiled to the .\$(Platform)\$(Config)
folders.

There are several ways to deploy the required RAD Server application and run time DLL files to the
production server. Three common transfer methods are:

● Copy the package files to the production server path where RADServer is installed

● FTP the files to the production server

● Use the Platform Assistant (PAServer) with the “Project | Deployment” menu item to have the
IDE move the files to the production server. This screenshot shows an example for windows 64.

Project | Deployment files that PAServer can transfer

Copy the compiled RAD Server extension package files (for example, the project from Chapter 1
MyHelloWorldDelphiRADServerPackage) to the production RADServer folder.

💡
tip

When using PAServer, the default path where the files are deployed can be changed
editing the file paserver.config in the production machine. Elevated privileges may be
needed when PAServer is executed, depending on the needed path to write files.

85 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag
https://docwiki.embarcadero.com/RADStudio/en/RAD_Server_Docker_Deployment

Chapter 9: Deploying RAD Server -▶Windows : Linux : Docker

Configuring the EMSServer.ini file
Now that we have added a new resource to our production folder, we need to specify in EMSServer.ini
file that there is a new resource available.

Edit the emsserver.ini file to add each of your RAD Server extension packages under the
[Server.Packages] section.

Windows

[Server.Packages]

;# This section is for extension packages.

;# Extension packages are used to register custom resource endpoints

;c:\mypackages\basicextensions.bpl=mypackage description

c:\inetpub\wwwroot\RADServer\MyFirstDelphiRADServerPackage.bpl=First Windows Test Demo

Linux

[Server.Packages]

;# This section is for extension packages.

;# Extension packages are used to register custom resource endpoints

;c:\mypackages\basicextensions.bpl=mypackage description

/usr/lib/ems/bplMyFirstDelphiRADServerPackage.so=First Linux Test Demo

Docker

To configure the emsserver.ini file of an already running instance, run the ./config.sh script. The script
will restart apache automatically.

86 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/QtdV4m_0Ubk
https://youtu.be/ZzPfvOgS-Zk
https://youtu.be/YFem4Tmdxag

Chapter 10: RAD Server Lite -▶Watch the video

10
RAD Server Lite

What is the Lite version?

RAD Server requires a backend database, based on InterBase, and it is generally deployed as a web
server DLL module for either IIS or Apache. For this reason, a standard deployment requires:

● The web server and its configuration of the RAD Server module
● The RAD Server deployment and configuration
● An installation of InterBase with a special purpose RAD Server license (a license the user needs

to register on the target device to activate)

For development, we have long offered a stand alone version of RAD Server, based on the Indy HTTP
server, which offers limited performance but much easier deployment and the ability to be executed
under the debugger (so you can debug your RAD Server modules code). The development version is not
meant, and it’s not licensed for deployment. It has a limit in the number of users you can create, and it
can work with a local InterBase Developer edition (the license for it is part of the RAD Studio license).

RAD Server Lite (RSLite) offers a simpler deployment model for test servers and scenarios not requiring
a lot of throughputs, and it offers this by using the InterBase embedded database engine, IBToGo,
instead of the full-blown server and combines it with a simplified licensing model.

87 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/NMEC1Urcdv4

Chapter 10: RAD Server Lite -▶Watch the video

RSLite uses the same binary of the development edition (that ships with RAD Studio) along with
IBToGo binaries and a license slip file you can deploy with your solution (requiring no registration on the
computer you deploy it to). Because it uses an embedded database and because it uses the Indy HTTP
Server component, it cannot serve the same number of requests per second of a regular full-blown
RAD Server installation, and it cannot scale with multiple RAD Server front ends.

The underlying architecture used by RSLite has much more limited scalability, but we expect it to be
sufficient for many simple deployment scenarios — keeping in mind that the throughput also depends
on the specific code your RAD Server modules execute.

💡
tip

For deployment on a public system, we recommend avoiding exposing the RSLite
HTTP server directly, but making it accessible via a proxy configuration so you still
have a web server (like Apache or IIS) providing the security context for the incoming
HTTPS calls and forwarding those to RSLite.

How to get a RAD Server Lite License
You can redeem a license with any Enterprise or Architect license for RAD Studio 11 (including Delphi
11 and C++Builder 11). Visit this page and follow the instructions provided.

📃
note

You need your registration key and EDN account.

The process here is not just to receive a license key for RSLite, but a slip file (a license stored in a .TXT
file) that you can deploy alongside your installation. This license has no limitations in terms of the
number of installations, but you cannot have two instances running on the same machine.

📃
note

The license file needs to be placed in a specific sub folder, unlike what the general
information on the redemption site might seem to imply.

Deploying a RAD Server Lite project
Once you have the license before you deploy a project, there are two different considerations:

● First, you need to create a deployment configuration with RSLite, the required runtime packages,
and IBToGo deployment (These are the steps)

88 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/NMEC1Urcdv4
https://reg.embarcadero.com/srs6/promotion.jsp?promoId=572
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/RAD_Server_Lite_Deployment#The_Files_to_Deploy

Chapter 10: RAD Server Lite -▶Watch the video

● Second you need to generate a proper database file for production, compatible with the IBToGo
license — a local database created by RAD Server Developer edition won’t be compatible

The Files to Deploy

Deploying manually
In practical terms, these are the files needed to deploy an RSLite solution (in addition to your application
packages and their dependencies):

1. The RSLite executable, which is the same of the developer edition: EMSDevServer.exe available
in the RAD Studio bin folder (or the similar 64-bit version)

2. The required RAD Studio runtime packages, which include those required for a minimal
installation (listed here and available in the RAD Studio win32 or win64 redist folder) plus any
other runtime package required by the code in your RAD Server modules:

● bindengine<XX>0.bpl
● dbrtl<XX>0.bpl
● emsclientfiredac<XX>0.bpl
● emsserverapi<XX>0.bpl
● FireDAC<XX>0.bpl
● FireDACCommon<XX>0.bpl
● FireDACCommonDriver<XX>0.bpl
● FireDACIBDriver<XX>0.bpl
● rtl<XX>0.bpl
● vcl<XX>0.bpl
● vcldb<XX>0.bpl
● vclFireDAC<XX>0.bpl
● vclimg<XX>0.bpl
● vclwinx<XX>0.bpl
● vclx<XX>0.bpl
● Xmlrtl<XX>0.bpl

3. The InterBase ToGo deployment files found under the public document InterBase redist folder
(for example, C:\Users\Public Documents\Embarcadero\Interbase redist\InterBase2020) in the
subfolders win32_togo or win64_togo — for Linux you can find the libibtogo.so file in the
proper InterBase redist folder

4. Add the license file obtained above to the interbase/license folder (part of the IBToGo redist
configuration)

Using the Deployment Wizard
Deploy your files using the RSLite feature in the Deployment Wizard by following these steps:

1. Add the RSLite feature.
2. Next, add the IBToGo feature.
3. Uncheck the iblite registration file

89 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/NMEC1Urcdv4

Chapter 10: RAD Server Lite -▶Watch the video

4. In the How to get a RAD Server Lite License section, add the file to deploy: generate a rslite
activation file and set its destination as "interbase/license".

5. Next, add the file obtained from the Creating the Production Database section to deploy my
emsserver.ini to ./.

6. Finally, add the file obtained from the Creating the Production Database section to deploy my
emsserver.ib to ./.

MSVC runtime
In order to run IBToGo (and so RSLite using IBToGo) on a target Windows machine it needs to have the
Visual C++ 2013 runtime library installed. On a developer machine with RAD Studio, you’d most likely
have it already installed. On a general target deployment machine, however, you might have to install it,
after downloading it from Microsoft.

Creating the Production Database
With this configuration, you can start the RSLite by executing the EMSDevServer.exe application. Note
that if the target machine has an InterBase client, it will pick it up as a higher priority, and if the
InterBase client is the Developer edition that comes with RAD Studio, everything will work but in a
standard RAD Server Developer configuration.

You can figure this out by looking at the first few lines in the log when RAD Server starts. If it is an
“RSLite” configuration, the first few lines will look like this:

{"Thread":19124,"ConfigLoaded":{"Filename":"[folder]emsserver.ini","Exists":true}}

{"Thread":19124,"Licensing":{"Lite":true,"Licensed":true,"LicensedMaxUsers":2}}

{"Thread":19124,"DBConnection":{"InstanceName":"","Filename":"[folder]emsserver.ib"}}

If the code indicates that “Lite” is set to false, you might need to manually disable loading of gds32.dll
(or its 64-bit version) InterBase client library, generally found in C:\Windows\SysWOW64 (if the
InterBase client library cannot be found it loads the local ibtogo.dll.

Now, if you start RSLite (with the proper configuration) and there is no emsserver.ini file and no
emsserver.ib database file, it will prompt you to create one. For this to work, RSLite must find the
configuration in RAD Studio’s Object Repository folder (ObjRepos under the product folder). The easier
way to do this is to copy the files under Program Files
(x86)\Embarcadero\Studio\<XX>.0\ObjRepos\en\ems in a folder with this relative path from
emsdevserver.exe: “../ObjRepos/EMS”. In other words, you need an ObjRepos folder at the same level
directory as the folder containing your RSLite installation, the project deployment directory.

90 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/NMEC1Urcdv4
https://docs.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-160#visual-studio-2013-vc-120

Chapter 10: RAD Server Lite -▶Watch the video

📃
note

This is not needed for each RSLite deployment, only once to generate a production
database, you can later copy on the target computers as is. In fact, the database
created in a development environment is not compatible with RSLite deployment.

We recommend you specify as the target folder the same as your RSLite deployment so that the wizard
will create an emsserver.ini file and an emsserver.ib database file in your deployment folder. Now grab
the entire folder with RSLite, these configuration files, the runtime packages, and IBToGo, including the
license, and you have all you need to deploy on a target Windows computer.

Proxy Configuration
It is not recommended to expose RSLite directly as a public web application due to its limitations in
terms of protection and encryption. We recommend using a proxy layer, with a dedicated service or
using one of the popular web services as a front end. In Apache, for example, in you configure a virtual
host, enable HTTPS, and redirect the traffics to the RSLite instance with a configuration like the
following:

ProxyPass / http://localhost:8088

ProxyPassReverse / http://localhost:8088

ProxyPreserveHost On

For Linux
For Linux, you can follow similar steps as above, and everything should work as expected. As an
alternative, you can also consider installing the full RAD Server and then adding IBToGo to the
installation:

● Install the RAD Server using the ems_install.sh available in the RAD installation folder. See
Here

● Copy the IBToGo files from the InterBase “redist” folder to the EMS folder on Linux (/usr/lib/ems)
● Execute the EMSDevServerCommand and follow the wizard to create the EMS database and

configuration file

📃
note

You might need to run the application via sudo to have the proper permissions

91 (Copyright © Embarcadero Technologies, Inc.)

https://youtu.be/NMEC1Urcdv4

