
SECURITY GAPS
in the Neglected 90%

of your Application 7
WHITEPAPER

Introduction by Sonatype CTO Joshua Corman

Page 2
7 Security Gaps in the Neglected 90% of Your Application

ABOUT JOSHUA CORMAN
In his capacity as CTO, Joshua researches new technologies and software development

trends to help evolve Sonatype’s product strategy. Additionally, Joshua is working with

the broader IT community as well as policy and standards bodies to improve software

development security standards and best practices.

Prior to Sonatype, Joshua served as a security researcher and executive at Akamai Tech-

nologies, The 451 Group, and IBM Internet Security Systems, among other firms. A well-

regarded innovator, he co-founded Rugged Software and IamTheCavalry to encourage

the development of new cyber security solutions in response to the world’s increasing

reliance on digital infrastructure. Joshua's unique approach to addressing cyber security

in the context of human factors and social impact has helped position him as one of the

most trusted names in IT security. He also serves as adjunct faculty for Carnegie Mellon’s

Heinz College, IANS Research, and as a Fellow at the Ponemon Institute.

Joshua received his bachelor's degree in philosophy, graduating summa cum laude, from

the University of New Hampshire.

INTRODUCTION

Software applications need to be delivered faster and across more platforms than ever. To
build high quality software in short order, we’ve seen a dramatic shift from source code to
component-based development, with open source and third party components providing
the innovation and efficiency that developers need.

Unfortunately, our dependence on components is growing faster than our ability to secure
them. These shared components are not top-of-mind when considering application risk.
Worse yet, components are increasingly the preferred attack surface in today’s applications.

The combination of growing component usage, coupled with lack of security, requires us to
urgently re-evaluate traditional application security approaches and identify practical next
steps for closing this security gap.

So what’s the “neglected 90%,” why is it attractive to your adversaries and what can you do
about it? Plenty. Here are 7 key points, for starters.

Joshua Corman
Chief Technology Officer

Page 3
7 Security Gaps in the Neglected 90% of Your Application

In this context, we are not talking about open
source infrastructure, software or tools. We’re talking
about open source components that are used to
build today’s applications, most of which are down-
loaded from public repositories such as the (Maven)
Central Repository. After all, why create your own
web framework, or logging mechanism, when you
can turn to proven components and frameworks
from open source projects? These can be basic com-
ponents, such as the SLF4J logging framework, or a
major framework like Struts or Spring.

When considering that 90% of a typical application
is comprised of open source or third party compo-
nents, and 71% of these applications have at least
one critical or severe vulnerability, there is a clear
motivation to stop neglecting this risk.

What’s more, since a single component is likely to be used across many thousands of applications, an adver-
sary’s job gets even easier—and their effort multiplied—since attacking single component vulnerability can
simultaneously impact many applications across many organizations around the globe.

In response to this growing issue, the OWASP (Open Web Application Security Project) recently updated their
Top 10 list of the most critical security risks, stating that developers should “avoid using components with
known vulnerabilities.”

While exact statistics vary, it is widely accepted that
application security gets the smallest proportion of
an overall security budget, with vastly higher expen-
ditures made on network, data and other defenses.

In fact, application security receives less than 1 per-
cent of total security spending—yet most experts
agree that applications are now the number one
attack target.1

Security Budgets Are
Out of Sync with Risk
and Reality

RiskBudget

As Open Source Usage
Expands, So Do the Risks

1 Source: The Verizon Business Data Breach Investigations Report
(DBIR) 2013.

Page 4
7 Security Gaps in the Neglected 90% of Your Application

A foundation of component governance coupled
with Static Application Security Testing (SAST) and
Dynamic Application Security Testing (DAST) pro-
vides the most holistic view of your application risk
and the most defensible starting points.

Together, these technologies factor for 100% of
your application, including the source code that is
written and compiled (10%) and the components
that are downloaded and assembled (90%).

Furthermore, when known to be vulnerable com-
ponents are eliminated early in the development
process, your DAST scans will yield significantly
more focused and manageable results.

Pareto’s Principle, or the 80-20 Rule, helps you manage those small things that really make the biggest differ-
ence to your results. So, in this case, instead of spending 90% of your time on 10% of your attack surface, you
can focus just 10% of your time to protect 90% of your attack surface.

Start with critical or severe component vulnerabilities, which are easy to identify and remediate. Once your
component security is underway, you can then move to SAST on the 10% of your application comprised of
source code and more efficiently manage and leverage your DAST scans.

Since software is assembled with components
coming in from a wide variety of sources, you’re
basically inheriting a software supply chain. But,
unlike mature industries like automobile manu-
facturing, you probably don’t (yet) manage or
govern this supply chain. Imagine driving a car
manufactured with parts from unknown vendors
who have no requirements for quality or security.
Your software is that car.

It’s imperative that your supplier-provided assets
are properly identified, tracked and quality-checked.
 Without it, you really don’t know what’s in your
car or who built it. If a “part” is faulty, you wouldn’t
even know if you’re using that part, much less
exactly which car models might be impacted.

Pareto Principle 2.0?
(the “90/10” Rule):
Low Effort and Big Gains

You Use a Software
Supply Chain. How Well
Do You Manage It?

Page 5
7 Security Gaps in the Neglected 90% of Your Application

Developers are happy to avoid risky components
if better options are easily available. However,
with the pressure to develop faster, it’s just not
possible for them to research if each component
is outdated or has known vulnerabilities or risky
“copyleft” license obligations.

Fixing problems (or better yet, avoiding the risks of
known bad components) early in development costs
vastly less than fixing issues later in production.

For component-based development, that means
making it easy for your developers to select the
safest component from the start, directly in the
tools that they use everyday. With decision support

built into their work environments (IDE), it is just as easy to build a safe application as a vulnerable one. If their
favorite component doesn’t meet your organization’s risk policy, developers will be guided toward a preferred
component replacement.

Since code ages more like milk than like a fine wine, risk management should be ongoing. New vulnerabilities
are frequently discovered in components previously thought to be safe, so to keep your applications from go-
ing sour, you should rely on automation to alert you when new risks are discovered in existing applications.

In this scenario, security doesn’t lag behind development. It is seamless and in-sync with development and
production as well.

Empower Your
Developers. They’re
Your Front Line Defense.

Just when you thought you had a headache, it gets worse. There are often hundreds, if not thousands, of
components used by a typical development team, and each component has tens, if not hundreds of depen-
dencies as well as multiple versions.

Just like a traditional supply chain, it has become impossible to manually manage the selection, tracking and
inventorying of these supplier-provided components. Your software supply chain needs the same type of
automated visibility and management that has been a lifesaver to other industries for years. The good news is:
it costs far less and is far easier to implement.

Page 6
7 Security Gaps in the Neglected 90% of Your Application

In many organizations, the traditional waterfall
development and delivery approach has been re-
placed by Agile—and increasingly DevOps. This ap-
proach reduces the cycle time between the incep-
tion of an idea and delivery of that idea in reliable
software. This requires that application security is
also agile and re-thought in the context of modern
development methods, continuous integration, and
continuous delivery. If not, then application secu-
rity will be even more out of step with the pace of
development and associated risk.

And, just as decision support should be integrated
into developer tools, there should also be better
integration between application stakeholders in the

organization. A great opportunity is to do this in the context of Development Operations, known as “DevOps”,
“Rugged DevOps” or “DevOpsSec.” Leaders in the DevOps movement seek to reduce friction between develop-
ment and operations teams by focusing on business value, efficiency and velocity. For many, automating the
SDLC with built-in processes to minimize quality, security and license risk early in development is definitely a step
in the right direction. The result? A secure blanket over your neglected 90%—and trusted software that stays that
way over time.

The creation of an “open source review board” or
even a so-called “golden repository” may feel com-
forting. The reality is that, even if you believe that
every developer in every instance is using only “ap-
proved” components, the manual effort to keep that
“white list” up to date is enormous and endless.

Plus, how do you track components as they move
through the development lifecycle? And since new
vulnerabilities are constantly being discovered, how
do you track which applications are newly vulnerable?

The bottom line is that manual policies or “workflow”
efforts just can’t keep up with the volume, complex-
ity and change in the component supply chain.

The fact is, there is already a better alternative to manual policy management. One that is integrated into devel-
oper tools—and is as easy to use as a spell checker. What if you could define policies that are then automated
along the entire development lifecycle? And what if policy violations not only identified the vulnerability—but
the recommended replacement as well?

Manual Policies Just
Don’t Work in a Secure
Development Lifecycle.

Agile Development
Requires Agile Security.

Page 7
7 Security Gaps in the Neglected 90% of Your Application

Applications have become the number one attack
target, yet less than 1% of security spending address-
es applications. And of that budget, the vast majority
addresses the code an organization writes, which
comprises only 10% of a typical application. So, there
is virtually no money being spent on the 90% of an
application that is the bulk of the exploit surface.

Furthermore, adversaries are getting smarter by the
day. With shared component vulnerabilities, the force
multiplication effect is stunning. Why launch a single

attack on a single application, when you can target a
vulnerable component and potentially compromise
thousands of applications at once?

The good news is that addressing component secu-
rity is the easiest and least expensive of all applica-
tion security methods. A little effort reduces a lot of
exploit risk. And when you begin with component
governance, easier issues with the biggest impact
can be resolved quickly while the harder and re-
maining issues can be addressed with DAST/SAST
later in development.

Sonatype’s Component Lifecycle Management helps
organizations to build trusted software and keep it
that way over time. Developers are empowered to
choose the better components from the start to avoid
unnecessary risk and the costs associated with down-
stream fixes. Policies can be automated through the
entire SDLC. When new vulnerabilities are discovered,
you’ll know which applications are impacted and
which components are now preferred.

When component risk is considered along with DAST
and SAST approaches, application security expands
to be more holistic and effective. Start now because
even a little component governance goes a long way.

SUMMARY

If You’re Not Using Secure Components, You’re Not Building Secure Software.
It’s Not Your Fault, But it’s Still Your Problem.

Why launch a single attack on a single application, when
you can target a vulnerable component and potentially
compromise thousands of applications at once?

Page 8

Sonatype Inc. • 8161 Maple Lawn Drive, Suite 250 • Fulton, MD 20759 • 1.877.866.2836 • www.sonatype.com
2014. Sonatype Inc. All Rights Reserved.

Sonatype’s software protects the world’s enterprise software applications from security, compliance, and licensing
threats. Every day, millions of developers build software applications from open source building blocks, or components.
Customers rely on the Sonatype family of products to accurately identify and analyze component usage and proactively
fix flawed components throughout the software development lifecycle so applications are secure and comply with licens-
ing and regulatory requirements. Sonatype is privately held with investments from New Enterprise Associates (NEA),
Accel Partners, Bay Partners, Hummer Winblad Venture Partners and Morgenthaler Ventures.

Understand your current component
usage – Use a “bill of materials” to identify
the suppliers in your “software supply chain.”
This report lists all components you use
along with any known vulnerabilities.

Design your Open Source Software (OSS)
governance to be frictionless, scalable
and automated – Your organization must
not only define your policies, but also find
practical ways to enforce them without slow-
ing down development and without encour-
aging “work-arounds.” Policies must be agile
enough to keep pace with modern develop-
ment. Strive to automate policy enforcement
and minimize drag on developers.

Enable developer decision support –
Provide information on component vulner-
abilities (and licensing risk) within the IDE
to make it easy for developers to pick the
best components from the start. By avoiding
problems early you will improve developer
productivity and reduce costs.

Continuously govern your risks through-
out the software lifecycle – Policies that are
enforced across the entire software lifecycle
ensure a secure lifecycle. And since security
isn’t a point-in-time event, continuous moni-
toring should be used to alert you when you
are about to use a vulnerable component
and as new vulnerabilities are discovered in
components you’ve already used.

NEXT STEPS
As you consider the role of application security in your organization, consider these four things:

For more information about any of these steps, please visit www.seehow.org.

