
WHITEPAPER

Software Supply Chain
Automation:
GoInG BEyond AGIlE, lEAn And dEvoPs
By Mike Hansen, Sonatype Senior VP of Products

Page 2
Software Supply Chain Automation: Going Beyond Agile, Lean and DevOps

ExEcuTIvE summARy

While the term “supply chain” is not common in the lexicon of the software development
discipline, it is a ubiquitous trait of modern software development life cycles. Software de-
velopment has borrowed much from the learnings of Toyota. However, we still have yet to
fully embrace the most fundamental element of The Toyota Way: The underlying supply chain
where the extraordinary benefits of Toyota’s perennial continuous improvement programs
are evident.

Agile has brought the concepts of iteration, routine inspection and adaptation along with a
focus on continuous improvement. Lean introduced the notion of the build-measure-learn
loop. Most recently, DevOps, like the combination of agile and lean, has bridged the gap
between the operational and development disciplines. However, nearly all optimization has
been done around the production of software, without real consideration for the supplier
dimension, primarily the open source ecosystem. This unchecked diversity of supply, where
development teams typically choose whatever technology is deemed appropriate, as well as
whatever version might be in vogue at the time of selection, has introduced a significant de-
gree of unnecessary complexity. While empowering development teams to choose their own
suppliers (i.e. software components) has enabled speed, increased throughput and unlocked
innovation, there is much hidden inefficiency and risk.

Software supply chain automation will unleash the next level of application development
efficiency, driving extraordinary increases in innovation, productivity and cost savings while
enabling far greater control of risk.

ABouT mIkE HAnsEn

As the Senior Vice President of Products, Mike brings nearly 20 years experience

building and leading global product development organizations ranging from

start-ups to the Fortune 100. Most recently Mike was Vice President of Devel-

opment for Hanley Wood where he led development across five product lines,

including the creation of advanced business analytics platforms for the residen-

tial construction industry. Prior to this, Mike was Vice President of R&D for Bantu

where he led product development efforts that drove one of the worlds largest

private instant messaging networks with the U.S. Department of Defense.
Mike Hansen

Senior Vice President
of Products

Page 3
Software Supply Chain Automation: Going Beyond Agile, Lean and DevOps

That is an extraordinary difference in complexity for GM, leading to significantly higher overhead costs, vari-

ability in the flow of supplies and greater challenges in quality management to cite only a few of the inherent

disadvantages. It is no wonder the Prius outsells the Volt better than 10 to 1. Interestingly, the software de-

velopment practices of the majority of organizations today tend to have more in common with GM than you

might think.

Supplier complexity impacts cost and quality, two important factors for competitive differentiation. The same is true of software.

suPPly cHAIn oPTImIzATIon

To produce the Prius, Toyota leverages 125 total suppliers. To produce the Chevy Volt, General Motors uses

over 800 suppliers. Ironically, 73% of the Prius is sourced from Toyota’s suppliers, whereas only 46% of the Volt

is outsourced. The visual comparison is somewhat striking.

Number of Suppliers

Impact of supply chain optimization in automobile manufacturing

Sales of Prius vs. VoltCost Comparison

Toyota Prius Toyota PriusToyota PriusGM Volt GM VoltGM Volt

200 2

$15,000

$5,000

400 4

$20,000

$10,000

600 6

$25,000

800 8
$30,000

10$35,000

Page 4
Software Supply Chain Automation: Going Beyond Agile, Lean and DevOps

REcEnT PRoGREss

Over the last 15 years, software development has

benefited greatly from practices and tooling created

as part of the agile, lean product development and

DevOps movements. Agile has brought the concepts

of iteration, routine inspection and adaptation along

with a focus on continuous improvement. This has

led to marked increases in development efficiency

relative to approaches like waterfall. However, we

occasionally ended up building the wrong thing.

Lean emerged in response to these product man-

agement challenges and has introduced the notion

of the build-measure-learn loop, tightening the

relationship between the product management and

development disciplines along with the end users

of the software. Borrowing from the routine inspec-

tion and adaptations of agile, lean has enabled the

notion of “failing fast” providing teams with a more

direct route to building the right solutions.

Most recently, DevOps, like the combination of

agile and lean, has bridged the gap between the

operational and development disciplines. This has

shifted important operational thinking and practic-

es to much earlier points in the development pro-

cess and vastly reduced the time it takes to deploy

new code, ultimately introducing significant gains

in productivity.

The inclusion of these key disciplines involved in

the production of software has led to significant in-

creases in development effectiveness as silos have

been torn down, communications streamlined and

waste removed. However, despite the revolutionary

nature of the changes in supply that have occurred

throughout this same 15 year period, there has

been little focus on the suppliers that now feed

software development—primarily the open source

software ecosystem.

Today’s component supply chain

A Software Supplier Sea Change

At the turn of the century, the vast majority of a typ-

ical application was written by the organization pro-

ducing it. Today, with the huge and rapidly expand-

ing body of freely available open source software,

the opposite is true. The largest portion of modern

applications is typically open source, upwards of

80-90% in many cases. While the term “supply chain”

is not common in the lexicon of the software devel-

opment discipline, it is a ubiquitous trait of modern

software development lifecycles.

This shift happened somewhat gradually and

kind of snuck up on the software development

discipline. Organizations continued to witness

incremental gains in productivity by leveraging

more and more of the diverse specialization that

the open source ecosystem offers. Nearly all opti-

mization has been done around the production of

software, without real consideration for the supplier

dimension. This unchecked diversity of supply,

where development teams typically choose what-

ever technology is deemed appropriate, as well as

whatever version might be in vogue at the time

of selection, has introduced a significant degree

of unnecessary complexity. In fact, the situation

is arguably far worse than what were explicit and

intentional choices made in building the Chevy

Volt and other GM models. It leads to a dark matter

version of technical debt creating a pernicious drag

on overall development throughput.

30+
critical or severe

license or
security issues
in an average

application

43
versions of
the same

component are
downloaded

by an average
organization

60%
of organizations

don’t
know what

components are
used or where

Page 5
Software Supply Chain Automation: Going Beyond Agile, Lean and DevOps

If Developers Built Cars

For a provocative thought experiment, let’s trans-

pose modern software development practices into

the production of an automobile. In this universe,

BigAuto teams independently choose whatever sup-

plier they want for a car’s transmission and whatever

revision that might be available at the time. Word

on the street is that a lot of people have looked at

how the transmission was made and no one is com-

plaining much, so it is presumed to be good.

This transmission also has numerous other parts

inside it that were chosen from even more suppliers

that supposedly have good reputations and pro-

duce good parts. There are ways to see what parts

are being used but no one really bothers with that.

Each team just wants a transmission and worrying

about the internals is not part of their job descrip-

tions. “Someone else tested the transmission, and

we just need to test the car. If something is wrong

that the supplier isn’t willing to fix, they are happy

to share the designs so we can fix it ourselves,” the

teams rationalize.

The team that is responsible for each model car is

also given complete autonomy to choose pretty

much any supplier they want for any part they want

and change them whenever they want. This is done

without any systems for tracking the corresponding

activity. BigAuto sensed this might not be opti-

mal and tried to institute a tight set of controls on

their supply chain several times. However, without

understanding the benefits that the current level

of autonomy and unobstructed flow was yielding,

each ill informed attempt crushed productivity

and innovation and undermined their competitive

position. Forced to contend with this generally ad

hoc approach to sourcing, BigAuto was left without

the ability to perform any kind of orderly recall, not

managing the corresponding risks.

due to a lack of software supply chain visibility, processes and automation…

Developers choose
whatever supplier
they want for any

given part.

Any part can be
chosen even if
it is outdated

or known to be
unsafe.

There are no
systems to

inventory and
track the various

parts that are
used.

Everyone realizes
there are some
issues, but the

prevailing wisdom
is that “it’s good

enough.”

If there is a recall
on a specific part,

no one would
know if the part

was used or
where.

Page 6
Software Supply Chain Automation: Going Beyond Agile, Lean and DevOps

The process used by BigAuto seems like it is working

for the most part. There isn’t too much news about

people getting stranded, and there haven’t been

too many catastrophic outcomes. Everyone realizes

there are some issues, but the prevailing wisdom is

that it’s good enough.

However, a few internal champions have recently

started to think investments in modern tooling here

could lead to significant competitive differentiation

in conjunction with risk reduction.

Ripe for Optimization

This is basically the way most software is written to-

day. It does in fact work and teams are more effective

than they ever have been despite the abridged list of

shortcomings depicted in the allegory, all of which

have a very real analog in software development.

However, good is the enemy of great. While em-

powering development teams to choose their own

suppliers (i.e. software components) has enabled

speed, increased throughput and unlocked inno-

vation, there is much hidden inefficiency and risk.

Attempts to centralize control and decision making

—often instituted in reaction to some previously un-

identified risk manifesting—have failed to produce

positive results and have often made situations far

worse. This is an intuitive and commonly attempted

response, yet incorrect. Instead, solutions must allow

for the appropriate constraints (rules) to be estab-

lished up front, the testing for conformance auto-

mated, and the information needed to remediate

issues provided in the context of the existing tooling

used by development and operations teams —trust

but verify.

Like the waste cut out by agile, lean and DevOps

practices, there is substantial waste that can be

removed with automated tooling and process

innovation throughout the software supply chain.

Additionally, significant benefits are achievable

regardless of the specific methodologies in use.

By providing visibility and empowering teams with

the knowledge necessary to make the right choices

as early as possible (data+rules+context), we can go

even faster, further driving down costs and simulta-

neously managing or eliminating elective risk. The

current state of the art is ripe for optimization.

Good is the enemy of great. While empowering development teams to
choose their own suppliers (i.e. software components) has enabled speed,

increased throughput and unlocked innovation, there is much hidden
inefficiency and risk.

Page 7
Software Supply Chain Automation: Going Beyond Agile, Lean and DevOps

Supplier Bloat

Complexity is the enemy of many things but espe-

cially of efficiency and risk. It leads to symptoms like

burdensome technical debt, quality issues and chal-

lenges in keeping a system secure. The magnitude of

unnecessary complexity in modern software supply

chains serving even a small portfolio of applications

can be significant. In a large portfolio it can be enor-

mous, and it typically is.

We worked with one organization that upon deep-

er inspection was found to be using 81 out of the

85 available versions of a popular web framework,

spanning years of release history. While that is

somewhat of an extreme case, this anti-pattern of

greater than necessary version dispersion is actually

quite common. After all, the average open source

project releases a new version four times each year

and it is fairly common practice to update only in

response to a known issue impacting a particular

application. Given the average application also has

hundreds of open source components, any given

day can see multiple new versions across the inven-

tory of components in use. Also, issues that may be

known to a particular open source project are often

unknown to its consumers—i.e. the “no recall” prob-

lem mentioned earlier.

In addition to version dispersion, there is also

technology dispersion, where different components

that perform the same basic functions are used

somewhat indiscriminately and often due to per-

sonal tastes or familiarity (e.g. logging frameworks,

web frameworks). Viewed in the context of a single

application, such dispersion isn’t usually much of

an issue, but notable impacts can become apparent

with even as few as two applications. For example,

subject matter expertise must be spread more thinly

across the organization concentrating expertise

locally within a team and potentially limiting future

flexibility in resource allocation. The effective surface

area of supply is also greater correlating directly with

reduced efficiency and the potential for problems.

More recently, open source vulnerabilities have

become exploit targets as commonly used compo-

nents with known vulnerabilities are often the path

of least resistance for attackers. These vulnerabilities

are now getting catchy monikers like HeartBleed,

ShellShock, POODLE and GHOST. Unfortunately, a

larger than necessary set of suppliers with no real

visibility of them leads not only to greater risk po-

tential but incremental challenges and greater costs

in securing the supplier dimension.

There are significant
opportunities for performance

gains as investments optimizing
these supply chains can markedly

improve efficiency and control
risk, unleashing the full potential
of an organization’s capacity for

innovation.

Page 8

Sonatype Inc. • 8161 Maple Lawn Drive, Suite 250 • Fulton, MD 20759 • 1.877.866.2836 • www.sonatype.com
2015. Sonatype Inc. All Rights Reserved.

Sonatype helps organizations build better software, even faster. Like a traditional supply chain, software applications
are built by assembling open source and third party components streaming in from a wide variety of public and internal
sources. While re-use is far faster than custom code, the flow of components into and through an organization remains
complex and inefficient. Sonatype’s Nexus platform applies proven supply chain principles to increase speed, efficiency
and quality by optimizing the component supply chain. Sonatype has been on the forefront of creating tools to to
improve developer efficiency and quality since the inception of the Central Repository and Apache Maven in 2001, and
the company continues to serve as the steward of the Central Repository serving 17.2 Billion component download
requests in 2014 alone. Sonatype is privately held with investments from New Enterprise Associates (NEA), Accel Partners,
Bay Partners, Hummer Winblad Venture Partners and Morgenthaler Ventures. Visit: www.sonatype.com

AnSweR: SoFtwARe SuppLy ChAIn AutoMAtIon

As software development evolves, we continue to

create situations where complexity blocks further

increases in productivity and innovation per unit of

investment. These problems are often the impetus

for rethinking and reshaping the status quo.

For instance, the introduction of high-level lan-

guages, object oriented programming, agile, lean,

DevOps and dependency management are all

examples of how we broke through barriers when

reaching the limits of scale. Soon, the industry will

begin to broadly demand solutions in response to

software supply chain complexity. But there is no

need to wait.

As the use of automation in areas of testing, build

and deployment has provided significant perfor-

mance benefits, so can further automation through-

out the software supply chain. This is done by

providing non-intrusive guardrails that consider the

need for both autonomy and acceleration.

The manufacturing industry was transformed with

three basic principles: Use fewer and better parts,

limit the variety and quantity, and track where they

are used. Software supply chain solutions address

these principles using repository management,

automated open source policy enforcement and up-

to-date component data feeds. At a high level these

solutions facilitate:

•	 Quality - Easily avoid known open source
license issues and security vulnerabilities. Use
better, up-to-date open source component
types and versions.

•	 Visibility - Integrate component insight and
policy automation into popular development

tools.

•	 Traceability - Instantly identify out-of-date and
defective components across the SDLC.

•	 Remediation - Effectively prioritize responses
to new issues using a combination of visibility
and context to rank risk.

Solutions that facilitate comprehensive software

supply chain automation are poised to usher in the

next wave of development productivity, on par with

the gains possible with agile, lean and DevOps. In

fact, the gains are likely to be even greater.

