
Introducing Component Lifecycle Management (CLM):

 How to Improve Productivity
while Minimizing Risk

 in Open Source Application Development

WHITEPAPER

Table of Contents

Executive Summary: Modern Applications Call for a New Approach 1

A Shifting Software Development Landscape 2

Modern Benefits, Modern Problems 3

The Case for Component Lifecycle Management (CLM) 8

Ways to Assess your Current Component Usage & Risk 15

 1 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Executive Summary: Modern Applications Call for a New Approach

The last ten years have seen a revolution in the way software is developed and delivered.
Organizations have moved away from tedious custom source code programming in favor
of quicker component-based approaches.

Most often, a component is open source software that is shared among developers via public
repositories, such as the Central Repository, and is downloaded and assembled into applications.
More than 400,000+ components are available, such as web frameworks that form the foundation for
web applications, logging mechanisms and database access routines to name just a few.

This new development model is agile, enabling organizations to develop faster, reduce
cost and improve efficiency; all of which are necessary to meet the demands of the business. Not
surprisingly, today more than 80 percent of a typical software application is comprised
of components.

However, most application security technologies are designed for source code not components,
leaving organizations vulnerable to potential threats. As a result, organizations are vulnerable to
threats stemming from shared components, such as security breaches, intellectual property claims, as
well as application instability and performance defects.

Furthermore, development teams lack visibility into component usage. It is difficult to know what
components were used, identify where they were used and evaluate current security risks. What’s
more, vulnerabilities often are nested deep within an application and are not easily apparent.

This mismatch between development methods and application security tools has forced a dangerous
tradeoff between speed and security. The development and security departments are at odds, with
development teams pressured to deliver quickly while the security officer’s mandate is to minimize
risk. A new approach is needed to secure applications at the pace and scale that business demands.
Organizations that fail to address this issue are leaving 80 percent of their application code at risk.

A new category of solution has emerged called Component Lifecycle Management (CLM). The key
tenets of this approach include:

• Defining component usage policies and automating enforcement using the tools developers use
everyday

• Empowering developers to choose components based on favorable security,
licensing, or architectural criteria

• Enabling flexible governance without disrupting the development process

• Providing comprehensive understanding of component usage and risks across the entire software
lifecycle

• Continuously monitoring for newly discovered threats, even in older components

This white paper describes the opportunities and challenges presented by component-based
software development, and how CLM can amplify the benefits while also reducing the risk.

About Sonatype
Sonatype has been on the forefront of creating tools to manage, organize, and better secure
components since the inception of the Central Repository and Maven in 2001. Today, over
70,000 companies download over 8 billion components every year from the Central Repository,
demonstrating the explosive growth in component-based development. Today’s software ecosystem
has created a level of complexity that is increasingly hard to manage. Partnering with application
developers, security professionals and the open source community, Sonatype has introduced a way
to keep pace with modern software development without sacrificing security. We call it Component
Lifecycle Management (CLM), the new platform for securing the modern software supply chain.

We believe that to achieve application security, the approach has to be simple to use and integrated
in the tools developers already use everyday. With CLM we’re improving the visibility, management
and security of component-based development across the entire lifecycle. Together with our
customers, we’re ushering in a new era of application security.

 2 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 3 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

A Shifting Software Development Landscape

Modern software development is increasingly component-based – In the early years of software
development, applications consisted primarily of custom developed code and internally developed
components with only a very small fraction of code sourced from outside the organization.

Today’s applications are assembled – Developers now assemble applications from existing
components often sourced from outside the organization, rather than relying on custom source code.

Agile development has replaced waterfall – In the past, development efforts followed
a “waterfall” methodology, a highly structured and sequential process where projects spanned months
or even years. Now, the modern development process is rapid, continuous and collaborative. Delivery
and iteration have replaced lengthy requirements development processes.

Open source has become an integral part of modern applications – In most cases externally
sourced components are from open source communities. Modern applications often rely on hundreds
of open source components and frameworks. Use of open source components supports both
efficiency and innovation.

The shift in the software development landscape has contributed to vast efficiency gains and cost
savings. However, these changes have also introduced new risks and requirements for the modern
software development organization.

Modern Benefits, Modern Problems

While component-based software development is widely accepted and growing exponentially, the
complexities and risks are just now becoming clear.

Components are Pervasive

Demand for open source components is skyrocketing, with requests from the Central Repository, the
industry’s primary source for open source components, increasing 800% over the past five years to
nearly 8 billion in 2012 and projections of up to 20 billion in 2013. [See Figure 1]

Thousands of Sonatype "Application Health Check"
assessments have confirmed that the average application is 80
percent built from components and a recent survey of 3,500
developers confirmed this statistic.

Flawed components introduce significant risk

Whether provided by commercial vendors or open
source initiatives, components can introduce significant
management, security and licensing challenges. Recent
analysis of the Central Repository by Aspect Security
uncovered widespread security vulnerabilities among the
most commonly used open source components. However,
few organizations have the proper controls in place to
mitigate the risks posed by flawed components. [See Figure
2]

Component complexity exacerbates the problem

Components are enormously complex; each one is made up
of hundreds of sub-assemblies (e.g. class files). Class files are
commonly shared among components. Of the nearly 200

million total class files in the Central Repository, there are fewer than 10 million unique class files
being combined in myriad ways. [See Figure 3]

To add to the problem, components may also depend on other components. These relationships,
known as transitive dependencies, can be difficult or impossible for developers to understand,
track and support without tools designed to manage such a complex supply chain. Component
dependencies can introduce security breaches, intellectual property claims, as well as application
stability and performance defects. Often, risks are caused by a flawed component nested deep in an
application’s dependency tree and flaws are not easily apparent.

Software Development Trends

 IT ONCE WAS... IT NOW IS...

 Waterfall Methodology Agile Development

 Code-based Component-based

 Developed Assembled

 Independent Collaborative

 Proprietary Open Source

FIGURE 1: Demand for open source
components is skyrocketing, with
requests from the Central Repository, the
industry’s primary source for open source
components, increasing 800% over the past
five years to nearly 8 billion in 2012.

 4 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 5 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

Organizations lack actionable security, quality and licensing information.

It is difficult and time consuming for developers to research and determine security, quality and
licensing characteristics for all of the components they use to assemble their applications. To do this
for direct dependencies is hard enough; to extend this research to all component dependencies is
beyond reason. Even if research is conducted, it is difficult to take action because it is not integrated
directly in the tools that developers use and problems are found much later in the lifecycle. Given
the pressure to deliver applications quickly, developers are forced to take a chance when they select
components – exposing the organization to risk.

Organizations regularly consume outdated, flawed, or insecure components

Open source projects innovate rapidly and release frequently. However, since there is no update
notification infrastructure for open source components, there is no easy way for component
consumers to know when a new version has been released, much less which defects have been
identified and fixed. [See Figure 4] This causes organizations to consume outdated, flawed, or insecure
components, even years after newer fixed versions are available.

Few organizations have a strong process for minimizing component risk

Control of artifacts in development

32%
There are no standards.
Each developer or team
chooses the components that
are best for their project.

44%
Yes, We have some corporate
standards,but they aren't
enforced.

24%
We're completely locked
down. We can only use
approved components.

FIGURE 2: Recent analysis of the Central Repository by Aspect Security uncovered widespread security vulnerabilities
among the most commonly used open source components. However, few organizations have the proper controls in place to
mitigate the risks posed by flawed components.

FIGURE 3: Components are enormously complex; each one is made up of hundreds of sub-assemblies (e.g. class files). Class
files are commonly shared among components. Of the nearly 200 million total class files in the Central Repository, there are
fewer than 10 million unique class files being combined in myriad ways.

 6 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 7 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

Agile development and geographically dispersed development teams adds to the
complexity.

Agile software development projects - with their rapid iterations, continuous integration builds and
continuous deployment - have all resulted in many more releases over the life of a software project.
To support this agile process, developers need real time compliance information with the ability to
quickly eliminate any issues. Waiting until the end is counter productive in an agile environment.

Increasingly development teams are geographically dispersed, often including external contractors.
Keeping disparate teams in sync and enforcing standards adds yet another layer of complexity to
component risk management.

Restrictive, approval-laden policy approaches don’t work.

Some organizations attempt to manage component usage by implementing restrictive policies.
If a developer wants to use a new component, approvals are needed from the security, legal, and
architecture teams. Even if the approval process is “automated” using workflow, it can’t keep up with
the scale or pace of development. This forces developers to delay their development cycles, work
around the policy, or pick from sub-optimal (e.g. out-of-date) components that were previously
approved.

Security tools for custom code deliver results late in the development cycle.

Many organizations have turned to application scanner technologies or application lifecycle
management to address security concerns. Although these tools play a role in a layered security
strategy, they aren’t designed for components that make up the majority of applications. Scanning
tools are designed to evaluate risk in custom source code – providing results that are delivered after
the fact, late in the development lifecycle. Components require a different approach. Known security,
licensing and quality intelligence should be integrated throughout the development lifecycle,
preventing problems and remediating flaws fast and early in the application lifecycle.

FIGURE 4: There is no easy way for component consumers to know when a new version has been released, much less which
defects have been identified and fixed.

Organizations don’t have the capacity to manage newly discovered flaws

These days, more and more organizations are aware of and support the use of open source
components, however they are unaware of the complexity, unsure of the number of components
used and unclear about where they are used. [See Figure 5] When a new defect or security flaw is
discovered, many organizations are left exposed, unaware of where or how they are using the affected
component. It is a challenge that impacts the full software supply chain.

Does your organization maintain an inventory of
open source components used in production applications?

45%
No

21%
Yes, for all components but
NOT their dependencies

35%
Yes, for all components
including dependencies

FIGURE 5: These days, more and more organizations are aware of and support the use of open source components, however
they are unaware of the complexity, unsure of the number of components used and unclear about where they are used.

 8 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 9 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

Sonatype’s Approach to Component Lifecycle Management

Sonatype Component Lifecycle Management (CLM) is an application security platform custom-
designed to secure component-based applications. CLM tracks usage, enforces policy and prevents
the use of flawed components throughout the modern software supply chain. By natively integrating
into the tools developers already use, risk is removed proactively which drastically reduces
downstream “fix” costs. This modern approach to software assurance makes it possible to reduce
risk and ensure compliance without impeding development velocity. Sonatype brings practical
intelligence to component-based software development. Sonatype pioneered component-based
software development with innovations such as Apache Maven, the Central Repository, Nexus, and
m2eclipse.

Sonatype CLM provides a comprehensive inventory of components and associated bill-of-materials.
Unique binary fingerprint matching identifies component inventory with extreme accuracy. Inventory
information is provided at the component download, repository manager and application level.
Sonatype’s inventory capability provides the foundation for the following capabilities provided by the
CLM. [See Figure 6]

FIGURE 6: CLM tracks usage, enforces policy and prevents the use of flawed components throughout the modern software
supply chain.

The Case for Component Lifecycle Management (CLM)

A new category of software development products and information services has emerged to help
ensure the integrity of the modern software supply chain, amplifying the benefits of modern
development while reducing risk.

Effective CLM solutions offer a platform for sharing components across teams to ensure collaboration
and encourage standardization. They also offer governance infrastructure to implement and enforce
policies. A CLM platform should work with open source components sourced from the community as
well as custom-developed components from inside the enterprise.

With CLM, software development organizations gain the collaborative tools, intelligence and control
required to address the reality and risks of agile, component-based development. Organizations that
have embraced CLM have seen dramatic improvements in their development efforts. Key benefits
include:

• Reduced exposure to security vulnerabilities

• Avoidance of intellectual property and licensing risks

• Compliance with open source policies without disrupting development

• Improved ability to meet regulatory compliance requirements

• Improved software quality

• Improved developer productivity and collaboration

An effective CLM platform has three critical attributes:

Actionable

Prevent and remediate
flaws by leveraging accurate
security, licensing & quality

information

Integrated

Inform and guide developers
within existing software

development tools

Continuous

Monitor continuously to
identify and remediate
new risks in production

applications.

DESIGN IT BUILD IT RELEASE IT MANAGE ITDEVELOP IT

1. Secure Consumption
with the use of
certified components
and integrity checking
throughout the
lifecycle

2. Govern Development
to ensure policy
compliance without
disrupting developer
productivity

3. Profile Exposures
to proactively identify
and prioritize action

4. Remediate Risk
by preventing and
quickly fixing security
and IP vulnerabilities

5. Monitor Threats
in production
applications to ensure
continuous trust in
critical operations

SONATYPE CLM

 10 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 11 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

FIGURE 7: Secure Consumption - Sonatype CLM authenticates downloaded components including security, licensing and
quality information.

Secure Consumption

Sonatype CLM ensures trust in the software supply chain by authenticating and securely delivering
components. [See Figure 7] Sonatype CLM gives you:

• OSS project validation to ensure high quality, trusted components – Sonatype provides
component intelligence for the components that are checked into the Central Repository. This
security, licensing and quality intelligence is used to drive policy and governance throughout the
software lifecycle.

• Authentication throughout the software lifecycle eliminates risk of tampering inside the
firewall – Sonatype uses strongly signed hashes and checks the integrity of the component
throughout the lifecycle. This allows you to detect intentional or inadvertent changes to the
component.

• Secure component delivery to eliminate man-in-the-middle attacks – Sonatype is uniquely
positioned to secure the delivery channel between Central and your organization using SSL. This
ensures that the component is not manipulated during delivery.

Governed Development

CLM provides developers with security, popularity, and licensing information making it easy to detect
and prevent flaws early in the development process. This “zero-latency” approach to remediation
reduces the obstacles that usually reduce developer compliance.

• Rich security, licensing, and popularity metadata drives action in the IDE – Developers minimize
expensive downstream problems by selecting components based on security, licensing and quality
intelligence integrated directly in the IDE. [See Figure 8] Component recommendations help
developers speed the remediation process for flawed applications.

• Information and policy enforcement extends across the IDE, repository, and CI server to
automate and enforce governance across the entire software lifecycle – Comprehensive
component management requires assistance across the entire software lifecycle. Sonatype provides
appropriate guidance in your IDE, repository manager, build and CI environments to ensure policies
are enforced. Developers don’t have to learn new tools, the information they need is in the tools they
use throughout the lifecycle.

FIGURE 8: Governed Development - Developers minimize expensive downstream problems by selecting components based
on security, licensing and quality intelligence integrated directly in the IDE.

 12 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 13 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

Profile Exposure

CLM provides the ability to proactively identify and prioritize your actions. Vulnerabilities are
proactively identified and reported in the context of your organizational policies. Developers can
prioritize remediation action based on a visual threat summary of security, licensing and architecture
factors. Sonatype CLM enables you to:

• Identify at-risk components: Quickly identify and prioritize remediation efforts with a visual threat
indicator that summarizes the policy outcome based on security, licensing and architecture factors.
[See Figure 9]

FIGURE 9: Profile Exposure - A visual threat indicator summarizes security, licensing and architecture policy considerations
allowing developers to easily prioritize and take action.

Remediate Risk

CLM provides the ability to prevent and quickly fix flawed applications. Developers start with the right
components and can easily fix applications directly within their IDE. Sonatype CLM enables you to:

• Prevent problems by starting with the right components: Developers can select the best
components to use within the IDE based on security, licensing and quality information.

• Push-button migration: Developers can migrate to new component versions with a simple mouse
click in their IDE. [See Figure 10]

FIGURE 10: Remediate Risk - Developers can assess the versions using a side-by-side comparison and migrate to a new
component version with a single mouse click.

Monitor Threats

CLM provides ongoing, continuous monitoring of both development and production applications.
Sonatype proactively alerts you to new vulnerabilities that have been discovered. Sonatype CLM
enables you to:

• Discover new vulnerabilities: Newly discovered security, licensing, and quality issues are identified
and mapped correctly to the application inventory.

• Proactive notification: New violations are proactively reported with contextual information that
expedites corrective action.

• Enterprise risk & policy assessment: Executive dashboards provide the ability to assess enterprise risk
profile and policy compliance. [See Figure 11]

 14 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 15 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

FIGURE 11: Monitor Threats - Dashboards and reports provide a complete view of global risk with drill-down detail to drive
action.

Steps Toward Good Component Best Practices

Organizations interested in minimizing risk, while firmly establishing both control and visibility across
today’s complex and agile software supply chain, should take the following first steps toward CLM.
These steps encompass making proactive improvements in awareness, policy and enforcement:

STEP ONE: Empower developers to choose the right components from the start

• Use security, licensing and quality information to select the right components from the start.

• Make decisions directly in the tools developers use today: IDE, Repository Manager, Build and CI
tools.

• Ensure components are delivered securely and remain authenticated throughout the development
lifecycle.

STEP TWO: Quickly identify your exposure & remediate flaws

• Identify at risk applications with flawed or suboptimal components.

• Quickly prioritize effort based on summarized security, licensing & architecture factors.

• Easily replace flawed components to meet policy guidelines.

STEP THREE: Precisely identify your components, repository & application inventory

• Track component downloads and usage to understand consumption.

• Assess the health of your repository & determine what is being distributed to development teams.

• Identify what is in your applications and uncover potential security, licensing, and quality problems.

STEP FOUR: Implement flexible policies that speed agile development with guidance for each
lifecycle stage

• Establish policies regarding security, the use of viral licenses, and the out-of-date or
out-of-version components.

• Guide development efforts with lifecycle appropriate actions: design, development, build, deploy
and production monitoring.

STEP FIVE: Proactively monitor & analyze production applications to meet policy compliance
goals

• Maintain an inventory of all components and dependencies used in production applications.

• Continuously monitor application bills of materials for updates and newly
discovered vulnerabilities.

• Support enterprise risk profile, policy compliance analysis and reporting efforts.

Ways to Assess your Current Component Usage & Risk

Sonatype offers a variety of ways to assess risk across your current software lifecycle. View the
components your organization has downloaded, the state of components in your repositories and
assess risk of those used in your applications. Get detailed information about your security, licensing
and quality risks.

 16 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM) 17 INTRODUCING COMPONENT LIFECYCLE MANAGEMENT (CLM)

Security for Modern Software Development

Component Snapshot Report

We’ll help you understand which components your organization has downloaded from the Central
Repository, and where you might find potential security, licensing, or quality risks. Through the
Snapshot Report you’ll learn:

• How many components have been downloaded and when.

• Security information including severity threat levels.

• Detailed licensing information such as “copy left,” “non standard” or “missing.”

Repository Health Check Report

If your organization uses a Nexus Repository (also from Sonatype), you can get detailed information
about known security vulnerabilities or unacceptable licenses in your Nexus repository manager.

• Discover which components are in your repository and which ones have known vulnerabilities or
license issues.

• Quickly see the breakdown of vulnerabilities based on severity and threat levels.

• Drill down to see detailed information to further assess your risk.

Application Health Check Report

The Application Health Check provides visibility into the components in use within your enterprise
applications. With tools provided by Sonatype, in minutes you’ll be able to:

• Analyze and understand the composition of any component-based application.

• Uncover potential security, licensing or quality problems.

• Check your applications and code from your suppliers to obtain an accurate view of vulnerabilities
introduced to your organization from a third party.

For more information on assessing your risk: visit http://www.sonatype.com /go-fast-be-secure

For a quick online tour of the Sonatype CLM solution visit www.seehow.org.

For general information, visit: www.sonatype.com

© 2013. Sonatype Inc. All Rights Reserved.

Sonatype Inc. · 8161 Maple Lawn Drive, Suite 250 · Fulton, MD 20759 · 1.877.866.2836 · www.sonatype.com

