
Red Hat CloudForms
Architectural Overview

Steve Reichard, RHCE
Principal Software Engineer

Vinny Valdez, RHCA
Principal Software Engineer

Version 1.0
May 2011

1801 Varsity Drive™
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

UNIX is a registered trademark of The Open Group.

Intel and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2011 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Send feedback to us at refarch-feedback@redhat.com

refarch-feedback@redhat.com 1 www.redhat.com

mailto:refarch-feedback@redhat.com
mailto:refarch-feedback@redhat.com?subject=Feedback%20on%20CloudForms%20Architectural%20Overview%20Reference%20Architecture
mailto:security@redhat.com
http://www.opencontent.org/openpub/

Table of Contents

 1 Executive Summary...3

 2 Red Hat Cloud Strategy...4
 2.1 CloudForms Cloud Engine..6

 2.2 CloudForms Application Engine..6

 2.3 CloudForms System Engine...7

 2.4 CloudForms Cloud Services..7

 3 Red Hat Cloud Solution Architecture...8
 3.1 The Cloud as viewed by NIST...8

 3.2 Red Hat CloudForms and the NIST model...14

 3.3 High Level Functional Areas...19

 4 Red Hat CloudForms Components..27
 4.1 Cloud Interface..28

 4.2 Content Provision Management..31

 4.3 Application Description Generation...32

 4.4 Image Lifecycle Management...34

 4.5 Application Lifecycle Management..39

 4.6 Cloud Services..41

 5 High Level Architectural Example..48
 5.1 Overview..49

 5.2 Defining Application Deployment..51

 6 Detailed Architectural Workflows...54
 6.1 Functionality Mapping...55

 6.2 Assumptions..56

 6.3 Define..57

 6.4 Deploy...61

 6.5 Manage..66

 7 Architectural Operational Flexibility..69
 7.1 Security, Multi-tenancy, Service Proxy..69

 7.2 Alternative Deployments...69

 8 Conclusion...70

Appendix A: Contributors...72

Appendix B: References..73

www.redhat.com 2 refarch-feedback@redhat.com

http://www.redhat.com/

 1 Executive Summary
Cloud computing is quickly becoming the platform of choice for users and businesses that
want to reduce operating expenses and be able to scale resources rapidly. Eased automation,
flexibility, mobility, resiliency, and redundancy are several other advantages of moving
resources to the cloud.

Even though cloud computing is in the early stages, there are different types of cloud solutions
available to businesses today. On-premise private clouds allow businesses to take advantage
of cloud technologies while remaining on a private network. Public clouds allow businesses to
make resources available to external consumers. Hybrid clouds allow the best of both public
and private cloud computing models.

In this paper the concepts that comprise an Infrastructure as a Service (IaaS) Cloud are
discussed first at a high-level conceptual view, then broken down into actual products, an
example application deployed and each step of this use case broken down. The reader
concludes with complete knowledge of a Red Hat CloudForms, how to deploy applications,
and how Red Hat is uniquely positioned to be the authoritative interface of all Private, Hybrid,
Community, and Public Clouds.

refarch-feedback@redhat.com 3 www.redhat.com

mailto:refarch-feedback@redhat.com

 2 Red Hat Cloud Strategy
Red Hat's cloud vision is unlike that of any other IT vendor. We recognize that your IT
infrastructure is - and will continue to be - composed of pieces from many different hardware
and software vendors. We let you use and manage these diverse assets as one cloud,
enabling cloud to be an evolution, not a revolution or a monolithic stack locked to the
technology roadmap and business practices of a single vendor.

When you choose Red Hat for your cloud, you get:

• The most comprehensive solutions for clouds - both private and public.

• Consistent enterprise-class environments that bridge the physical and virtual world,
inside the data center and public clouds.

• Strategic flexibility without lock-in.

• Better infrastructure, designed specifically for multi-tenant clouds.

• Industry-leading ecosystem that makes cloud usable, accessible, and safe.

In a market full of hype, Red Hat makes the cloud real and compelling. Today.

Infrastructure-as-a-Service (IaaS) is about delivering infrastructure—which is to say resources
like compute, storage, and networking - to users. Many organizations are getting into cloud
computing by building an on-premise IaaS cloud. They may want to keep the option to bridge
from private to public clouds, a.k.a. hybrid clouds, open. But they are often concerned about
using public clouds for important business applications, whether because of specific regulatory
or audit issues or just because they are wary of adding a new element of potential risk to their
IT governance.

The IaaS term is widely used. Dig deeper though, and you find that not all IaaS solutions are
created equal. For example, the typical IaaS manages the cloud but does not manage the life-
cycle of applications running in the cloud - even though the cloud should be in support of the
application and not the other way around.

Furthermore, this typical IaaS makes the naive assumption that organizations are looking to
start over with a brand new infrastructure as they move into cloud computing. Nothing could be
further from the truth. Organizations want to join the cloud computing revolution, but they want
to do it in an evolutionary way that leverages and extends their existing infrastructure and
maintains portability across different technology stacks and providers.

Red Hat CloudForms is different. Like others, it allows organizations to build and manage their
own IaaS cloud for internal consumption. But it does far more. It integrates with existing
products and technologies, including physical servers and virtualization platforms from other
vendors, to provide the easiest on-ramp to an on-premise cloud. It manages applications
throughout their life-cycle rather than just the virtual machine containers in which they sit.

In short, Red Hat CloudForms is Infrastructure-as-a-Service done right.

www.redhat.com 4 refarch-feedback@redhat.com

http://www.redhat.com/

Previously, Red Hat has shown that Red Hat Cloud Foundations provided the necessary
technologies needed for the cloud infrastructure. CloudForms is the next generation of
technologies which builds upon Red Hat Cloud Foundations to provide a complete IaaS cloud
solution.

CloudForms provides the IaaS infrastructure through:

• Application Lifecycle Management

• Compute Resource Management

• Infrastructure Services

refarch-feedback@redhat.com 5 www.redhat.com

Illustration 2-1: Red Hat CloudForms

mailto:refarch-feedback@redhat.com

 CloudForms is delivering technologies in the following areas:

• CloudForms Cloud Engine

• CloudForms Application Engine

• CloudForms System Engine

• CloudForms Cloud Services

 2.1 CloudForms Cloud Engine

CloudForms Cloud Engine is responsible for all cloud resource management. It enables
creating cloud resources, managing policies and work-flows around those resources, and
governing access and permissions for the resources. Quotas, quality-of-service, and security
policies are also under administrator control. End-users can then provision resources through
a self-service web interface subject to policy constraints.

The CloudForms Cloud Engine provides functionality in the following areas:

• Cloud Interface

• Application Lifecycle Management

 2.2 CloudForms Application Engine

The CloudForms Application Engine provides template-based management of applications.
One or more templates can then be aggregated or associated and given the operational
parameters and configurations needed to boot, initialize, and provide the defined services.
Application Engine therefore explicitly handles applications that span multiple virtual machines,
a common occurrence.

The CloudForms Application Engine provides functionality in the following areas:

• Application Description Generation

• Image Lifecycle Management

www.redhat.com 6 refarch-feedback@redhat.com

http://www.redhat.com/

 2.3 CloudForms System Engine

CloudForms System Engine operationally manages running systems across physical, virtual,
and cloud environments. It provides continuous compliance of content and configurations (as
well as Red Hat entitlements) consistent with the definitions used by Application Engine. It
builds on top of Application Engine’s functionality by monitoring and updating while systems
are running on an ongoing basis. System Engine also works in concert with Application Engine
by supplying content that it can use to build images and deploy.

The CloudForms System Engine provides functionality in the area of Content Provision
Management.

 2.4 CloudForms Cloud Services

CloudForms Cloud Services provide the consistent functionality across varied cloud
environments for a wide variety of service such as storage, availability, etc..

refarch-feedback@redhat.com 7 www.redhat.com

mailto:refarch-feedback@redhat.com

 3 Red Hat Cloud Solution Architecture
In this section the cloud definitions as currently defined by NIST are provided, the mapping of
Red Hat CloudForms to the definitions are proposed, and a high level look that the Red Hat
CloudForms Solution Architecture is described.

 3.1 The Cloud as viewed by NIST

NIST1 (National Institute of Standards and Technology) has produced several documents that
supply definitions and provide common terminology for the cloud paradigm that are reiterated
in the remainder of this section.

• NIST Definition of Cloud Computing2

• NIST Cloud Computing Reference Architecture, v1.03

 3.1.1 Definition of Cloud Computing

Cloud computing is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction. This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment models.

 3.1.2 Essential Characteristics

On-demand self-service:

A consumer can unilaterally provision computing capabilities, such as server time and
network storage, as needed automatically without requiring human interaction with each
service’s provider. Broad network access capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, laptops, and PDAs).

Resource pooling:

The provider’s computing resources are pooled to serve multiple consumers using a multi-
tenant model, with different physical and virtual resources dynamically assigned and
reassigned according to consumer demand. There is a sense of location independence in
that the customer generally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a higher level of abstraction (e.g.,
country, state, or data center). Examples of resources include storage, processing, memory,
network bandwidth, and virtual machines.

www.redhat.com 8 refarch-feedback@redhat.com

http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Documents/Draft-SP-800-145_cloud-definition.pdf
http://www.redhat.com/

Rapid elasticity:

Capabilities can be rapidly and elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities
available for provisioning often appear to be unlimited and can be purchased in any quantity
at any time.

Measured Service:

Cloud systems automatically control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the type of service (e.g., storage,
processing, bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the provider and consumer of the
utilized service.

 3.1.3 Service Models
Cloud Infrastructure as a Service (IaaS)

The capability provided to the consumer is to provision processing, storage, networks, and
other fundamental computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastructure but has control over
operating systems, storage, deployed applications, and possibly limited control of select
networking components (e.g., host firewalls).

Cloud Platform as a Service (PaaS)

The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-
created or acquired applications created using programming languages and tools supported
by the provider. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or storage, but has control over
the deployed applications and possibly application hosting environment configurations.

Cloud Software as a Service (SaaS)

The capability provided to the consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from various client devices through a
thin client interface such as a web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities, with the possible exception of
limited user-specific application configuration settings.

refarch-feedback@redhat.com 9 www.redhat.com

mailto:refarch-feedback@redhat.com

 3.1.4 Deployment Models

Private cloud:

The cloud infrastructure is operated solely for an organization. It may be managed by the
organization or a third party and may exist on premise or off premise.

Community cloud:

The cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and
compliance considerations). It may be managed by the organizations or a third party and
may exist on premise or off premise.

Public cloud:

The cloud infrastructure is made available to the general public or a large industry group
and is owned by an organization selling cloud services.

Hybrid cloud:

The cloud infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary
technology that enables data and application portability (e.g., cloud bursting for load-
balancing between clouds).

 3.1.5 Cloud Actors

The following are some of the Cloud Actors from the NIST Cloud Model.

Cloud Consumer

Person or organization that maintains a business relationship with, and uses service from,
Cloud Providers.

Cloud consumers are categorized into three groups, based on their different
application/usage scenarios as listed in Table 3-1: Cloud Consumer Activities.

Consumer Type Major Activities

IaaS
Creates/installs, manages and monitors services for IT
infrastructure operations.

PaaS
Develops, tests, deploys and manages applications in a
cloud environment.

SaaS Uses application/service for business process operations

Table 3-1: Cloud Consumer Activities

www.redhat.com 10 refarch-feedback@redhat.com

http://www.redhat.com/

Cloud Provider

Person, organization or entity responsible for making a service available to Cloud
Consumers.

The providers perform different tasks for different service types, which are listed in
Table 3-2: Cloud Provider Activities.

Provider Type Major Activities

IaaS
Provisions and manages the physical processing, storage,
networking and the hosting environment and cloud
infrastructure for IaaS consumers.

PaaS

Provisions and manages cloud infrastructure and
middleware for the platform consumers; provides
development, deployment and administration tools to
platform consumers.

SaaS
Installs, manages, maintains and supports the software
application on a cloud infrastructure.

Table 3-2: Cloud Provider Activities

The activities of cloud providers can be grouped into the following perspectives: Service
Deployment, Service Orchestration, Cloud Service Management, Security, and Privacy.

Service Deployment refers to the cloud infrastructure operation as related to the
deployment models: Private cloud, Community cloud, Public cloud, Hybrid cloud.

Service Orchestration refers to the arrangement, coordination and management
of cloud infrastructure to provide different cloud services to meet IT and business
requirements. The three conceptual layers of a generalized cloud environment:
Service Layer, Resource Abstraction and Control Layer, and Physical Resource
Layer.

refarch-feedback@redhat.com 11 www.redhat.com

mailto:refarch-feedback@redhat.com

As depicted in the following illustration, Cloud Service Management includes all
the service-related functions that are necessary for the management and
operations of those services required by or proposed to Cloud Consumers. A
cloud provider performs the following functions to support cloud service
management: Business Support, Provisioning/Configuration, and
Portability/Interoperability.

The following aspects of Security must be managed in the cloud: Authentication
and Authorization, Availability, Confidentiality, Identity Management, Integrity,
Security Monitoring & Incident Response, and Security Policy Management.

The goal of Privacy in the cloud is to protect the assured, proper, and consistent
collection, processing, communication, use and disposition of personal
information (PI) and personally identifiable information (PII) in the cloud.

www.redhat.com 12 refarch-feedback@redhat.com

Illustration 3-1: Cloud Providers – Cloud Service Management

http://www.redhat.com/

Cloud Broker

An entity that manages the use, performance and delivery of cloud services, and negotiates
relationships between Cloud Providers and Cloud Consumers.

Three major services provided by Cloud Brokers:

Service Intermediation:

A cloud broker enhances a given service by improving some specific capability
and provides the value-added service to Cloud Consumers.

Service Aggregation:

A cloud broker combines and integrates multiple services into one or more new
services. The broker will provide data integration and ensure the secure data
movement between Cloud Consumer and multiple cloud providers.

Service Arbitrage:

Service Arbitrage is similar to service aggregation, with the difference in that the
services being aggregated are not fixed. Service arbitrage allows flexible and
opportunistic choices for the broker. For example, the cloud broker can use a
credit-scoring service and select the best score from multiple scoring agencies.

refarch-feedback@redhat.com 13 www.redhat.com

mailto:refarch-feedback@redhat.com

 3.2 Red Hat CloudForms and the NIST model

Red Hat CloudForms does not fit as a single actor in the NIST model. By itself, Red Hat
CloudForms is not a NIST defined Cloud Provider. Where a NIST defined Cloud Provider
provides the underlying hosting environment such as virtual machines, Red Hat CloudForms
does not. Rather, it extends the Cloud Provider's Cloud Service Management support and
facilitates Service Deployment and Service Orchestration. The illustration below shows the
standard NIST Cloud Provider without Red Hat CloudForms.

www.redhat.com 14 refarch-feedback@redhat.com

Illustration 3-2: NIST Cloud Provider

http://www.redhat.com/

Red Hat CloudForms also provides much more functionality than a NIST defined Cloud Broker.
A Cloud Broker merely redirects the Cloud Consumer to existing cloud providers as pictured
here.

refarch-feedback@redhat.com 15 www.redhat.com

Illustration 3-3: NIST Cloud Broker

mailto:refarch-feedback@redhat.com

Red Hat CloudForms, however, extends a Red Hat Certified Cloud Provider's features,
especially those related to Cloud Service Management. In particular,the
portability/interoperability functionality is increased with the features that are inherent in Red
Hat CloudForms, and further facilitate all requests from the Cloud Consumers. Other areas
may also see increased functionality and benefit from Red Hat CloudForms's abstraction being
able to provide a single multipurpose interface. The following illustration represents Red Hat
CloudForms extending a Cloud Provider's functionality.

www.redhat.com 16 refarch-feedback@redhat.com

Illustration 3-4: Red Hat CloudForms Extends Certified Clouds

http://www.redhat.com/

When combined with a virtualization environment, grid deployment, or bare-metal farm,
missing essential cloud characteristics are provided by Red Hat CloudForms. The hosted
environment is transformed into a functional cloud provider by the sharing of the Cloud Service
Management functionality between the hosting environment and Red Hat CloudForms, as
portrayed below.

refarch-feedback@redhat.com 17 www.redhat.com

Illustration 3-5: Red Hat CloudForms & Hosted Environment Cloud

mailto:refarch-feedback@redhat.com

Red Hat CloudForms abstraction capabilities allow it to perform more than the functionality of a
Service Aggregation Broker, by providing consistent features, content, and services across
supported environments. The ability to control deployments into any certified cloud provider
results in consistent cross-cloud views of content. The next illustration displays how Red Hat
CloudForms makes this possible.

www.redhat.com 18 refarch-feedback@redhat.com

Illustration 3-6: Red Hat CloudForms Provides Multi-Cloud

Interoperability

http://www.redhat.com/

 3.3 High Level Functional Areas

The high level functional areas of Red Hat CloudForms are:

• Cloud Interface
• Content Provision Management
• Application Description Generation
• Image Lifecycle Management
• Application Lifecycle Management
• Cloud Services (optional)

The Cloud Interface provides the Cloud Consumer a central point of interaction for defining,
deploying, reporting, and managing numerous cloud applications on potentially many public
and private cloud providers. The cloud interface is multi-tenant and provides multiple level
administration capabilities.

Content Provision Management supplies content (as well as Red Hat entitlements) to other
functional areas and provides configuration compliance and software modifications for running
instances.

refarch-feedback@redhat.com 19 www.redhat.com

Illustration 3-7: Functional Overview

mailto:refarch-feedback@redhat.com

Application Description Generation allows the Cloud Consumer to define their entire
application deployment, which is stored in XML format. This XML is used to build and configure
the application in various cloud provider environments.

Image Lifecycle Management controls the creation and management of the images used in
deploying the Cloud Consumer's application. Image Lifecycle Management uses the XML
definitions to create the images required and propagate create images to the various targeted
Cloud Providers.

Application Lifecycle Management is used to control and monitor the state of Cloud Consumer
applications. This functionality includes resource management, quota enforcement, policy
enforcement, application instantiation, configuration controller, etc.

Cloud Services are add-ons to a cloud deployment that ensures consistent functionality at
various cloud providers. The following is a list of functional areas some planned services
provide:

• Archival Storage
• Replicated Reliable File Systems
• Messaging
• Cloud ID Management
• Availability Monitoring/High Availability

www.redhat.com 20 refarch-feedback@redhat.com

http://www.redhat.com/

 3.3.1 Cloud Interface

When a Cloud Consumer engages Red Hat CloudForms, the Cloud Interface is the primary
point of interaction that the Cloud Consumer uses to initiate activities, from administration
duties, gathering reports on various resources, to defining and controlling an application
deployment into a cloud. The following illustration summarizes these functions.

refarch-feedback@redhat.com 21 www.redhat.com

Illustration 3-8: Cloud Interface

mailto:refarch-feedback@redhat.com

 3.3.2 Content Provision Management

Content Provision Management provides software to the other functional areas, manages
software repositories (from standard content sources such as Red Hat Network, uploaded self-
supplied collections, ISOs, etc), and applies configuration compliance and software
modifications for running instances. The illustration below depicts its interaction with the other
functional areas.

www.redhat.com 22 refarch-feedback@redhat.com

Illustration 3-9: Content Provision Management

http://www.redhat.com/

 3.3.3 Application Description Generation

The Cloud Consumer defines their application deployment as a set of systems configured with
collections of software and configuration data required to accomplish the assigned task. The
Application Description Generation outputs this definition as XML, as depicted below.

refarch-feedback@redhat.com 23 www.redhat.com

Illustration 3-10: Application Description Generation

mailto:refarch-feedback@redhat.com

 3.3.4 Image Lifecycle Management

The Cloud Consumer can decide to stage the software (in the form of disk images) or Image
Lifecycle Management has the ability for force a late staging when required. Either way, Image
Lifecycle Management is responsible to affirm the disk images are available at the Cloud
Provider. Image Lifecycle Management tracks images and may use one image as the source
for another or build the image from scratch. Once the image is available, Image Lifecycle
Management is responsible for the availability of this disk image at the Cloud Provider, as
shown below.

While using an existing image as the source for another image may help to limit proliferation of
images, if a system uses a single disk image that contains all the software needed for that
system, the potential for re-use is limited. However, if software is layered as separate disk
images, e.g. OS, database, and Java environment, any of these individual layers/disk images
has much greater potential re-use value. Using this concept of stratifying software proves to be
more effectual. For this concept to work, the ability to link the separate disk images to function
as a single functional image is required. This is accomplished as part of the post-boot
configuration.

www.redhat.com 24 refarch-feedback@redhat.com

Illustration 3-11: Lifecycle Management

http://www.redhat.com/

 3.3.5 Application Lifecycle Management

When the Cloud Consumer decides to deploy their application, the cloud interface is used to
instruct Application Lifecycle Management to carry out this activity. This is accomplished by
using a internal resource manger to identify a Cloud Provider that matches the policies, quota,
accessibility and availability that the Cloud Consumer requests. Then Application Lifecycle
Management instantiates each system with the software desired, applying local and intra-
deployment configurations, activating required cloud services, providing secure access to the
systems, and monitoring the deployment. Application Lifecycle Management performs other
actions such as shutting down the deployment, etc, displayed below.

refarch-feedback@redhat.com 25 www.redhat.com

Illustration 3-12: Application Lifecycle Management

mailto:refarch-feedback@redhat.com

 3.3.6 Functional Area Summary

The illustration below summarizes the high level conceptual solution when Red Hat
CloudForms abstracts various public Cloud Providers or by CloudForms extending various
virtualization, Grid, or farm environments. Red Hat CloudForms operations are segregated into
the following functional areas:

• Cloud Interface

• Content Provision Management

• Application Description Generation

• Image Lifecycle Management

• Application Lifecycle Management

www.redhat.com 26 refarch-feedback@redhat.com

Illustration 3-13: Expanded Functional Overview

http://www.redhat.com/

 4 Red Hat CloudForms Components
The previous section described the architecture in terms of the functional areas. The actual
implementation performs the functionality as a set of products. This section identifies the
components of Red Hat CloudForms and associates the architectural function with the
corresponding components. The Aeolus Project4 is the umbrella project for many pieces of the
cloud software. While depicted below is the mapping of functional areas to the higher level
projects, the following sections provide greater detail.

refarch-feedback@redhat.com 27 www.redhat.com

Illustration 4-1: Architectural Component Mapping

mailto:refarch-feedback@redhat.com

 4.1 Cloud Interface

The Cloud Interface provides the primary user interface for Red Hat CloudForms activities. An
API is also available as an alternative access method. The Cloud Interface functionality is
supplied by the Aeolus UI as represented below.

www.redhat.com 28 refarch-feedback@redhat.com

Illustration 4-2: Cloud Interface Components

http://www.redhat.com/

The cloud interface provides a centralized management interface for Cloud Consumers,
whether they be administrators or developers, to interact with disparate cloud providers. Using
the web-based interface, a Cloud Consumer can log on and perform certain actions based on
the rights associated with their account. The goal of the cloud interface is to abstract the back-
end cloud provider from the Cloud Consumer, regardless of whether the Cloud Consumer
desires to utilize EC2, Rackspace, a Red Hat Enterprise Virtualization infrastructure, or other
approved cloud infrastructure for their application. The illustration below shows how the cloud
interface provides access to Resource Management, Image Management, Administration,
Reporting, and Accounting.

refarch-feedback@redhat.com 29 www.redhat.com

Illustration 4-3: Cloud Interface Functional View

mailto:refarch-feedback@redhat.com

With Resource Management, the authorized Cloud Consumer is able to manage the active
resources such as listed in Table 4-1: Resources. Within each of these categories, attributes
like properties and permissions can me modified as needed.

Resource Description

User account
A Red Hat CloudForms Cloud Consumer; allows access and
controls permissions / roles.

Quota
Implements limits on instances or disk usages, can be
associated with a user account, cloud provider account, pool, or
pool family.

Cloud Provider
account

The account that allows access to a specific cloud provider.
This account can be associated with multiple pools.

Pool
A grouping of cloud providers as specified by the Cloud
providers accounts assigned to for the pool's use.

Pool family
A grouping of pools by user defined semantics– e.g. dev, test.
A pool can only be assigned to on pool family.

Instances These are systems that are running in cloud provider.

Deployment
Groups of instances that are related by being defined as part of
the same application deployment.

Table 4-1: Resources

With the Image Management interface, the Cloud Consumer is able to create, modify and
delete items relating to the definition of application deployment, e.g., systems, disk images,
configuration settings, etc. This allows the user to create the framework for publishing
applications and instances.

The interface also provides Administration capabilities which allows control over account roles
and permissions. Providers can be managed as well as hardware profiles.

One other key attribute of the cloud interface is the ability to track Reporting and Accounting
details from the cloud providers and local resources which are being utilized. Items such as the
number of instances running and the corresponding charges becomes more and more
important as applications are scaled.

www.redhat.com 30 refarch-feedback@redhat.com

http://www.redhat.com/

 4.2 Content Provision Management

Content Provision Management functionality is provided by the Katello component which
provides the collection of software and software feeds utilized by Image Factory when building
and modifying images. This content can come from a variety of resources. While Red Hat
Network is the premium supplier, other methods include repositories, ISOs, or software
collections - whether these are Red Hat, Red Hat Partners, other OEMs, or custom supplied.

refarch-feedback@redhat.com 31 www.redhat.com

Illustration 4-4: Content Provision Management

mailto:refarch-feedback@redhat.com

 4.3 Application Description Generation

Application Description Generation is the set of functionality that allows the Cloud Consumer to
create a recipe describing an application that they desire to deploy. As a recipe lists the
ingredients and the instructions of how to combine the ingredients. The generated application
description identifies the systems and software along with configuration data used in the
process of combining all elements. The functionality of Application Description Generation is
mostly provided by the Conductor. Table 4-2: Definitions defines terms relevant to this
component.

Term Explanation

Image or Disk
Image

The contents of a mountable disk; the contents of a mount-
point

Template

Description of a disk image with any meta-data required to
create an image; the described image may be bootable or non-
bootable; a non-bootable image is used to provide a distinct
software layer, such as a database

Assembly

Definition of a single instance containing one or more
templates and meta-data related to service configurations;
since this defines an instance, one constituent template must
be described as a bootable image; all configuration actions are
performed post-boot

Service
Configuration

Optional attribute of the assembly which describes the service
or services that the assembly provides to requires; this
information is used to configure and tie the assemblies of a
deployment together at launch

Deployable

Application deployment definition, contains one or more
assemblies and meta-data configuration; this configuration
specializes a deployment by qualifying it for a specific targeted
infrastructure

CDL
Content Description Language; XML format language used for
Template, Assembly and Deployable (TAD) definitions

Table 4-2: Definitions

www.redhat.com 32 refarch-feedback@redhat.com

http://www.redhat.com/

The application deployments must be described in a structured format that includes the
bootable operating system, any software requirements, configuration provided or required, and
any specific targeting information to instantiate the application. This is accomplished by the
Cloud Consumer interacting with the Conductor via the Cloud Interface (1), as pictured below.
The deployable is defined in CDL (3) by describing the templates, assemblies, services,
configuration data, and targeting data that compose the entire application deployment. The
source of the software options of content is provided by the pulp instance in Content Provision
Management (2). Targeting information allows the generic description to be specialized for a
specific deployment. Most commonly, this information specifies the compute requirements
(vCPUs, memory, disk space) needed for an instance.

refarch-feedback@redhat.com 33 www.redhat.com

Illustration 4-5: Application Description Generation

mailto:refarch-feedback@redhat.com

The following abstracted sample provides the general concepts of a CDL layout. A Deployable
is made of one or more Assemblies with configuration data. Each Assembly is made of one or
more Templates and configuration. Each Template lists the software and configuration data.
An Assembly optionally indicates the services that it defines or requires. Some of the
configuration data may be defined a the time of instance launch.

Begin Deployable Definition
 ...
 Begin Assembly Definition
 ...
 Begin Template Definition
 ...
 Software list
 End Template Definition
 End Assembly Definition
End Deployable Definition

 4.4 Image Lifecycle Management

Image Lifecycle Management is the functionality that creates, stores, and maintains the
images and descriptions, which supplies this content to the supported cloud providers. Image
Lifecycle Management functionality is performed by multiple component products:

• Conductor
• Image Factory
• Image Warehouse

Relevant terms used in this component section are listed in Table 4-3: Definitions.

Term Explanation

ICICLE

Image Content and Intended Configuration LanguagE; While
the CDL describes the definition of Templates, Assemblies,
and Deployables, the ICICLE provides listing of detailed
software revisions and configuration parameters of the created
entities. While CDL can be thought of as the shopping list, the
ICICLE is the itemized receipt.

Table 4-3: Definitions

One of the many functions of the Conductor is to initiate and co-ordinate Image Lifecycle
Manager activities.

Image Factory is the component that is responsible for building all cloud images. The image
description is supplied from the XML/CDL generated from Application Description Generation
(Conductor). The content comes from Content Provision Management. Additional software that
is needed to support the cloud operations is also added to the image.

www.redhat.com 34 refarch-feedback@redhat.com

http://www.redhat.com/

Image Warehouse tracks all images and is responsible for staging the images at the
appropriate cloud provider.

The images that are defined by the cloud consumer, are built with Image Factory and stored in
Image Warehouse. When a Cloud Provider provides an image as the source for the desired
image, Image Factory is not called upon. The provided image is specified in the definition.
However, Image Warehouse still stores the meta-data which allows the proper image
formation and assembly. In addition, in all cases Image Warehouse is also responsible for all
staging of images.

 4.4.1 Image Lifecycle - Standard

The standard Image Lifecycle is explicitly initiated by the Cloud Consumer after defining
templates using the cloud interface and requesting a build, or indirectly by the consumer by
requesting an instance launch of a deployable that contains templates that have not had
corresponding images built (1), as shown in the diagram in this section.

refarch-feedback@redhat.com 35 www.redhat.com

mailto:refarch-feedback@redhat.com

After Conductor is requested to initiate a build (2), it transmits a message containing the CDL
and the target Cloud Provider to Image Factory which is placed onto a queue (3). When
resources are available, Image Factory starts a build using the input removed from the queue.
If the build is from scratch, a Just Enough Operation System (JeOS) - which is a minimal OS -
is initially created. Instead of building from scratch, Image Factory can use a pre-existing disk
image. Next, the JeOS or pre-existing disk image is modified with the addition or removal of
software until the CDL is satisfied (4). The format of the disk image may require manipulation
to ensure compatibility with the target Cloud Provider. Once the disk image is complete, Image
Factory creates an ICICLE from the image, listing the specific versions of the software content
and configuration parameters (5).

The completed disk image and ICICLE are transmitted to Image Warehouse (6). Image
Warehouse stores the disk image, ICICLE, and source CDL for potential future use (7). It also
assures the disk image is available in the target cloud (8). For example, if the target cloud
provider is a Red Hat CloudForms cloud using Red Hat Enterprise Virtualization, the image is
migrated into RHEV's import domain and instantiated. If the target is Amazon EC2, the image
is bundled in S3 and registered in the appropriate region, allowing access for the specified
Cloud Provider user.

www.redhat.com 36 refarch-feedback@redhat.com

Illustration 4-6: Image Lifecycle Management - Standard

http://www.redhat.com/

 4.4.2 Image Lifecycle – Snapshot

After an instance had been deployed, it may be modified in the environment by user directed
software updates provided by the management capabilities of Content Provision Management.
These updates create a discrepancy between the image stored in Image Warehouse and the
running instance. Since the Cloud Consumer performed the updates, they may also desire to
update the Image Warehouse ICICLE and disk image. The Cloud Consumer may also desire
to leave the original images, since multiple deployments could have been started and not all
should be updated.

The Cloud Consumer updates the image definitions (1) by informing Conductor (2) to initiate
the activity. Katello updates definitions initiated by the Cloud Consumer and sends Image
Factory the listing of changes that have been applied to a previously instantiated image (3).
Image Factory creates the updated ICICLE and disk images (4) which are stored in Image
Warehouse (5). Image Warehouse optionally pushes the disk images to the appropriate cloud
providers (6). This workflow is depicted in the following illustration.

refarch-feedback@redhat.com 37 www.redhat.com

Illustration 4-7: Image Lifecycle Management - Snapshots

mailto:refarch-feedback@redhat.com

 4.4.3 Image Lifecycle – Katello Import

The Cloud Consumer may initiate (1) an image build from a Katello template (2), allowing the
Katello template to specify the content details of an image instead of the Cloud Consumer. The
remaining process , steps (3) through (8), flows as in the standard case (refer to Image
Lifecycle - Standard), except Conductor is initiated by Katello. This process is portrayed
below.

www.redhat.com 38 refarch-feedback@redhat.com

Illustration 4-8: Katello Template Import

http://www.redhat.com/

 4.5 Application Lifecycle Management
The functionality of Application Lifecycle Management allows the Cloud Consumer to control
the state of instances in the cloud, whether launching, stopping, monitoring, etc. The
functionality of Application Lifecycle Management is provided by several products, specifically:

• Conductor
• Condor
• Audrey
• Deltacloud
• Image Warehouse

Table 4-4: Definitions defines relevant terms used in this section.

Term Explanation

UUID Universally Unique Identifier; an identifier unique for each instance

Post-boot
Configuration

Once an instance is initially launched, activities are performed to
apply configuration and parameter settings, add additional software
or disk images, provide data to other systems for configuration, and
prepare instances for cloud management.

Table 4-4: Definitions

One of the many functions of the Conductor is to initiate and co-ordinate all Application
Lifecycle Management activities. The Conductor is also the maintainer of the resource data
that is used in the workflow which determines the best suitable launch environment.

Condor provides the functionality of a resource manager. In addition to scheduling the cloud
instances, it ensures that resources are available and enforces quota and policy. Condor
controls the state of cloud instances, whether launching or destroying. If Condor sees that an
instance is no longer operating, it restarts the instance based upon policy settings.

Communication with different cloud providers is controlled through the Deltacloud driver. The
Deltacloud driver creates an abstraction layer between the consumer and third party clouds.
This model allows Red Hat CloudForms to function with various Cloud Providers without
requiring all components to be written for the specific Cloud Provider.

Audrey is a set of tools that performs post-boot configuration of cloud instances. The list of
functionality it provides includes applying local and intra-deployment configurations, activating
required cloud services, providing secure access to the systems, and monitoring the
deployment.

refarch-feedback@redhat.com 39 www.redhat.com

mailto:refarch-feedback@redhat.com

Image Warehouse stores the descriptions of the instances. These descriptions are supplied to
the configuration server for completion of any required actions. The process of launching an
instance is pictured as follows.

The Cloud Consumer initiates a instance launch using the cloud interface (1). Conductor starts
the instance launch by submitting a request for the instance with Condor (2). Condor confirms
that the request does not violate policy or quota, and matches the request to a cloud provider.
Once matched, Condor sends out two parallel messages (3) with the UUID to be used for the
instance and other configuration data. One is to the Deltacloud driver to start the instance (4).
The other message is to Audrey to configure the instance with the provided UUID. Condor also
contacts Katello to resolve entitlements for the launched instances (3). Audrey contacts the
Image Warehouse to retrieve the CDL and ICICLE data and pass on the configuration
requests and UUID on to the configuration server (5). Once the configuration server discovers
the running instance with the matching UUID (6), it controls the post-boot configuration
process (7). Included in the post boot process is establishing trusted identity and credentials.
Once the instance has completed this process, the configuration server passes instance data
to Conductor.

Once the instance boots up, the post configuration takes place. This sets any IP addresses,
start services, etc.. for the image so it is ready to run. In the case of the load-balancer a pool of
IP addresses must be provided and policies must be set. For the web servers, they must be
configured with a default gateway and the web services must be started.

www.redhat.com 40 refarch-feedback@redhat.com

Illustration 4-9: Application Lifecycle Instance Launch

http://www.redhat.com/

 4.6 Cloud Services

Section 4.3 Application Description Generation broached the subject that assemblies may
indicate what services they provide or the services they require. Using a service that the Cloud
Consumer defined allows the interaction of multiple instances to become part of the
deployable's recipe. However, there may be services that a deployment may use that are not
provided in the cloud users deployable definition. Cloud Services are add-ons to cloud
deployments that ensure consistent functionality among various cloud providers. The following
is a list of functional areas that some planned cloud services may provide:

• Monitoring

• Managing

• Messaging

• Archival Storage

• Replication File System Storage

• Cloud Id Management

• High Availability

Cloud Services are special services that a user does not need to define, as a consistent
definition is provided. Cloud Services are added to a deployable's defintion when the Cloud
Consumer indicates they wish to include the service. The instance may be spawned as part of
their deployable, or the cloud provider may have a dedicated instance available in the cloud
which provides the service to multiple tenants.

 4.6.1 Monitoring

Red Hat uses the Matahari5 infrastructure to allow monitoring and controlling agents on cloud
instances. The agents provided allow the starting of applications and provide the monitoring
used in High Availability.

For JBoss Enterprise Middleware content, a management agent (JBoss ON) is installed via a
managed service definition. This mechanism can be used for any additional managed
containers used in deployments.

refarch-feedback@redhat.com 41 www.redhat.com

mailto:refarch-feedback@redhat.com

 4.6.2 Managing

As with non-cloud environments, Red Hat provides Management capabilities both for Red Hat
Enterprise Linux and JBoss Enterprise Middleware.

For Red Hat Enterprise Linux, the Cloud Consumer's application can be updated in place when
deployed using Katello. This causes the deployed images to fall out of compliance with the
definitions and saved images stored in the Image Warehouse. When a running instance
deviates from the stored image, it is identified as divergent. The Cloud Consumer can decide
to leave this as the status quo, or reconcile the instances and saved images. To make the
images consistent, Katello sends Image Factory the list of changes it has applied to the
instance. Image Factory generates updated CDL, images, and ICICLEs for the deployment.
The updated image or images are pushed to Image Warehouse which the pushes to the cloud
provider.

For JBoss Enterprise Middleware, the Cloud Consumer can deploy their application using the
basic provided infrastructure, or use a JBoss Operations Network (JBoss ON) server. In the
example in this paper, a JBoss ON server allows the Cloud Consumer to fully monitor, control,
and update the JBoss Enterprise application.

 4.6.3 Messaging

Not only does the infrastructure use AMQP in the form of MRG6 for communications internally,
but Red Hat will deploy the Messaging component of Red Hat Enterprise MRG as the
CloudForms' Messaging Service.

MRG Messaging key features include:

• AMQP support

• Flexible messaging paradigms

• Multi-language client support

• High performance

• Transient and durable messaging

• Federation

• Transactions

• Security

• Queue semantics

• XML support

• Distributed management console

www.redhat.com 42 refarch-feedback@redhat.com

http://www.redhat.com/

 4.6.4 Archival Storage

Archival Storage, sometimes referred to as blob storage, is provided as a method for reading
and writing large objects. The mechanism used for image storage in Image Warehouse is also
available to the Cloud Consumer for their own data. Operations such as whole file “get” and
“put” are performed via HTTP. The implementation is based on Project Hail7 or CloudFiles with
modifications such as a distributed database for tags and metadata. The data is stored is a
shard format, meaning the data is distributed using horizontal partitioning. Data is written to
one place, however, replication can be used to distribute reads. Replication is policy driven
and can be based on object context, site, tags, security, etc.. The Image Warehouse daemon
provides the ability for a caching or replication process to push copies to existing Archival
Storage such as Amazon's S3, RackSpace's Cloud files, Azure, Google Storage or to another
warehouse instance. If replication is between warehouse instances, when a request for an
object that has not been copied to the child node is received, the object is 'pulled' on demand.

refarch-feedback@redhat.com 43 www.redhat.com

Illustration 4-10: Archival Storage

mailto:refarch-feedback@redhat.com

 4.6.5 Replicated File System Storage

CloudFS provides a distributed shared file system for cloud use with POSIX semantics.
CloudFS can be included in CDL definitions to provide storage for statefull and hybrid cloud
deployments. In addition, this file system is suitable for deployment by a cloud provider as a
permanent, shared service. CloudFS is based on GlusterFS and adds the following
capabilities:

• Stronger authentication and authorization

• Encryption (AES-128/AES-256), both on the wire and on disk

• Multi-tenancy (isolating tenants' namespaces from one another)

• Quota and accounting support

• Multi-site replication

All of these features can be implemented in a modular way, so that deployments can utilize
only those deemed necessary or appropriate for their specific situation.

 4.6.6 Cloud Id Management

Cloud Id Management's main goal is to transparently integrate with the existing identities and
identity management systems present in the enterprise. Identity management in Red Hat
CloudForms is accomplished through Red Hat Enterprise Identity (IPA)8 project is based on
the open source FreeIPA project9. FreeIPA is an authentication and authorization framework
for large-scale Linux and Unix deployments. It integrates servers for Kerberos, LDAP, DNS,
and X509 Certificates into a secure, reliable, and scalable identity management solution.

www.redhat.com 44 refarch-feedback@redhat.com

http://www.redhat.com/

In a common scenario, when a Cloud Consumer instantiates a resource, there are several
entities to be considered:

Entity Description Notes

User Cloud Consumer

In contemporary deployments
authentication is predominantly
through Active Directory Domain
Services (ADDS).

Machine
System which the Cloud
Consumer uses to access the
CloudForms environment

Cloud Consumer’s workstation which
may or may not be connected to an
authenticating agent.

CloudForms CloudForms infrastructure
Uses Red Hat CloudForms internal
secure authentication.

Instance Cloud Consumer's
deployment/instances

May use a separate or an existing
domain.

Table 4-5: Identity Domains

Red Hat CloudForms takes advantage of an internal IPA instance or enables proxy
authentication to the external ADDS server(s) in case a cloud consumer has multiple domains.
CloudForms addresses the use case of enterprise Single Sign-On (SSO) allowing the Cloud
Consumer credentials acquired by logging into their workstation to be respected by the Cloud
Interface, thus the CloudForms infrastructure. Additional functionality allows the Cloud
Consumer's identity to be respected across different identity domains, thus the Cloud
consumer will be able to directly access launched instances.

Using System Security Services Daemon (SSSD)10 cross kerberos trust functionality between
IPA and ADDS can be established. The fact that multiple identity domains must be considered
creates a complex matrix of use cases - most of which CloudForms supports. However, there
are limitations that CloudForms might not be able to address in the near future as listed below.

Use Case Status

Joining a Windows
machine into the IPA
domain

It is not possible to make a Windows machine be a part of IPA
domain since it has proprietary protocols that IPA does not plan
to support in the near term future

Changing the way
Windows machine
joins domain

It is the same problem but the client side solution. CloudForms
do not plan to provide a client software for the Windows
workstation to join an IPA domain, however, a solution might be
provided by the Red Hat partners in the future.

Table 4-6: Use Cases Limitations

refarch-feedback@redhat.com 45 www.redhat.com

mailto:refarch-feedback@redhat.com

 4.6.7 High Availability

The optional High Availability cloud service has the goal to deliver maximum application
service availability for a collection of deployments. This is achieved by the detection or
recovery of failures in any of the following components of a deployment:

 1. Monitored Applications

 2. Individual Instances of Deployments

 3. Cluster Services

 4. Entire Deployments

Recovery from a detected failure may require terminations of components of the deployment.
The restarting of components is controlled by either Matahari agents or Condor. The following
illustration depicts a basic High Availability Configuration.

www.redhat.com 46 refarch-feedback@redhat.com

Illustration 4-11: High Availability Standard Cloud Policy Engine

http://www.redhat.com/

The High Availability Service also has the ability to escalate failures as determined by the
Cloud Policy Engine, as shown below. The purpose of escalating failures allows a repetitive
lower level failure to be recovered using a higher level recovery. For example, if an application
fails 10 times in 30 minutes, the Cloud Consumer may wish to escalate the application failure
into an instance failure. The Cloud Policy Engine is implemented using upstream Pacemaker11
services.

refarch-feedback@redhat.com 47 www.redhat.com

Illustration 4-12: High Availability Advanced Cloud Policy Engine

mailto:refarch-feedback@redhat.com

 5 High Level Architectural Example
This section takes a high level approach in demonstrating the process of defining an
application into a Red Hat CloudForms environment. For this discussion, the activities to
support the Cloud Consumer have been assumed, in other words, the focus is on how the
Cloud Consumer implements their application not the configuration of the infrastructure.

This Cloud Consumer would like to present a managed, highly-available web retail presence
which offers digital products such as ringtones, apps, e-books, music, etc. The specific cloud
provider that hosts the retail presence is not a priority. The requirements are such that the
Cloud Consumer can access their store while controlling the entire life cycle management of
the application, e.g. define, deploy, update, scale, manage (migrate, snaphot/backup), and
tear-down.

The Overview section follows the process of planning and designing the retail store. The
Define section provides the specific definitions that would be implemented.

www.redhat.com 48 refarch-feedback@redhat.com

http://www.redhat.com/

 5.1 Overview

Whether or not one is using a cloud, virtualization, or bare metal, a retail presence requires
planning and design. This type of application uses a multi-tier model to allow for scalability and
availability. These tiers consist of a web tier, application tier, and database tier, as shown the
diagram that follows.

Web servers are used to provide the frontend. A reverse proxy is used to cache static content,
while dynamic content is generated by a customized Java Enterprise Edition (EE) application.

Java EE middleware provides a database driver which allows for the connectivity between the
web frontend and the database backend in an abstracted fashion.

While a solution for the retail presence could be hosted on a single system, this solution uses
multiple web servers to provide scaling and active/active availability. Hardware or software
based load balancing may be used to spread the requests across the participating web
servers, but this implementation uses a software-based load balancer. The middleware is
hosted on the same systems as the web-server, utilizing clustering to maintain availability and
consistency. The load balancer, reverse proxy, and database are each separate systems.

refarch-feedback@redhat.com 49 www.redhat.com

Illustration 5-1: Application Tiers

mailto:refarch-feedback@redhat.com

For high availability of the load balancer, reverse proxy, and database server, the active
instance is monitored. Upon a disruption in the service, a replacement server is instantiated.
For the database server, this requires the storage to be highly available, highly reliable, and
persistent. This storage must be able to be disassociated with the old instance and associated
with the new instance. A Cloud Service that provides a Cloud FileSystem is used.

The process of directing network traffic to the site may require a Virtual Private Network
configuration. If the deployment is open to the internet, a DNS update is possible.

To summarize, Table 5-1: Store Components lists all active systems by functionality planned
for the initial deployment.

Instance Name
Instance

Count
Role

load-balancer01 1 Distribute Incoming Requests

reverse-proxy01 1 Serve static content quickly

database01 1 Store data for application

user-app-store01-03 3

Host user applications
(webserver, middleware,
clusterized JEE instance with
JDBC instances

Table 5-1: Store Components

www.redhat.com 50 refarch-feedback@redhat.com

http://www.redhat.com/

The following diagram represents the entire application deployment.

Not all the systems have the same compute, memory, or IO requirements. For example, a load
balancer may have minimal requirements in regards to storage space, however, the storage
for a database is more critical.

 5.2 Defining Application Deployment
This section defines the application in terms of the Templates, Assemblies, and the
Deployable. The Cloud Consumer has the option to supply configuration and/or customization
parameters including a script for the various components.

 5.2.1 Define Templates

As described in detail in Table 4-2: Definitions, a Template is a recipe of what software should
be in a disk image. This description is the list of software contained in the disk image, along
with metadata identifying the supported Base OS. The Base OS template is provided by either
a Cloud Provider's definition or from a Katello definition.

refarch-feedback@redhat.com 51 www.redhat.com

Illustration 5-2: Retail Web Store Application Deployment

mailto:refarch-feedback@redhat.com

All Templates are defined as required for the final application stack as detailed below.

Template Requirements Boot

rhel6_base rhel-x86_64-server-6 Y

lb rhel-x86_64-server-lb-6 N

rproxy squid N

db PostgreSQL N

app_server JBoss Enterprise Application Platform N

app_store User supplied application bundle N

Table 5-2: Templates

 5.2.2 Define Assemblies

An Assembly is a list of Templates, one of which must describe a bootable image. Assemblies
also describe the service configurations that are provided and required by the assembly. Each
assembly that indicates it requires management result in JBoss ON and Katello participating in
managing the instance. The Assemblies used for this solution are detailed in the following
table.

Assembly Name Templates Included Services Provided Services Required

load-balancer rhel6_base, lb load-balancer
web-ip (accepts multiples),
content-management

reverse-proxy rhel6_base, rproxy reverse-proxy content-management

database rhel6_base, db database
cloud-storage (provided by
CloudFS), content-
management

app-store
rhel6_base, db,
app_server, app_store
app_server

web-ip

database, reverse-proxy,
load-balancer, content-
management, JON-
management

Table 5-3: Assemblies

www.redhat.com 52 refarch-feedback@redhat.com

http://www.redhat.com/

 5.2.3 Define Deployable

Now the complete solution stack can be defined as a Deployable, which is composed of
Assemblies and additional meta-data. When instantiated, each Assembly is created according
to specified parameters.. Table 5-4: Deployable lists all relevant components.

Instance Name Assemblies Included Instance Count Targeting Data

load-balancer01 load-balancer 1 Small instance size

reverse-proxy01 reverse-proxy 1 Medium instance size

database01 database 1 Large instance size

user-app-store01-03 app-store 3 Medium instance size

Table 5-4: Deployable

refarch-feedback@redhat.com 53 www.redhat.com

mailto:refarch-feedback@redhat.com

 6 Detailed Architectural Workflows
This section describes the major flow of activity that Red Hat CloudForms performs when a
Cloud Consumer initiates Red Hat CloudForms actions as described in High Level
Architectural Example. The following workflow shows the high-lever overview for this
process.

www.redhat.com 54 refarch-feedback@redhat.com

Illustration 6-1: High-level Instance Workflow

http://www.redhat.com/

 6.1 Functionality Mapping

In the previous sections functionality was described as performed by Application Description
Generation, Application Lifecycle Management, Content Provision Management, Image
Lifecycle Management, and Cloud Interface. In this section the actual product components
from Red Hat CloudForms are used. The following illustration maps functionality to
CloudForms products. Cloud Interface remains abstracted as it represents an interface to each
component, and Cloud Services are invoked as needed.

refarch-feedback@redhat.com 55 www.redhat.com

Illustration 6-2: Functionality to Product Mapping

mailto:refarch-feedback@redhat.com

The Product Classification maps in the following way into the architecture as represented in
the following diagram.

 6.2 Assumptions

The assumptions which follow are either fairly straightforward actions, or actions that are
described in more detail in a future Reference Architecture.We

Assumed Activities:

• All users have been created with required permissions to perform the activities
attempted

• A Pool/Pool Family has been established with the account access required for the
constituent cloud providers

• All infrastructure and support functions have been performed e.g., Red Hat CloudForms
has been installed and configured

www.redhat.com 56 refarch-feedback@redhat.com

Illustration 6-3: Architectural Overview

http://www.redhat.com/

 6.3 Define
The section High Level Architectural Example provides the content details of defining the
Templates, Assemblies, and Deployable to specify the on-line store application.

 6.3.1 Templates

Base OS

The base Operating System is chosen from a list of available pre-configured Red Hat
Enterprise Linux 6 images. In this case these are Amazon EC2 Machine Images (AMI), but
may be provided by the Cloud Provider. The process is shown in the following diagram which
contains sequential numbers that correlate to the numbered steps that follow.

1. Cloud Consumer specifies the creation of a new template using Red Hat Enterprise
Linux 6 base OS for Amazon Web Services (AWS)

2. Conductor contacts Image Warehouse to retrieve the list of available AMIs

3. Conductor generates Template CDL based on Cloud Consumer input

4. Conductor saves Template CDL to local DB under Cloud Consumer account

refarch-feedback@redhat.com 57 www.redhat.com

Illustration 6-4: Create AMI Template

mailto:refarch-feedback@redhat.com

Template for Non-Boot Image

The process outlined below for the load balancer Template should be repeated for each of the
remaining Templates, as depicted in the illustration that follows.

• Piranha load balancer
• Squid reverse proxy
• PostgreSQL database
• JBoss Enterprise Application Platform
• Cloud consumer uploaded application

1. Cloud Consumer specifies the creation of a new template based on Red Hat Enterprise
Linux 6

2. Conductor contacts Katello to obtain list of related available software

3. Katello provides a list of packages/software groups available

4. Cloud consumer selects “load-balancer” package group (refer to Table 5-2: Templates)

5. Conductor generates Template CDL based on user input

6. Conductor saves Template CDL (to local DB under Cloud Consumer account)

www.redhat.com 58 refarch-feedback@redhat.com

Illustration 6-5: Define Template

http://www.redhat.com/

 6.3.2 Assemblies

The process outlined below for the Load-balancer Assembly should be repeated for each of
the remaining Assemblies. The process to create each Assembly is shown below.

• Reverse proxy
• Database
• App Store

 1. Cloud Consumer specifies new Load-balancer Assembly with Red Hat Enterprise
Linux6 Base and Piranha as the Templates (refer to Table 5-3: Assemblies)

 a) Includes Red Hat Enterprise Linux 6 Base Template

 b) Includes Load Balance Template

 c) Identifies that it provides load balance Service

 d) Identifies that it requires one or more Web IP addresses

 e) Specifies it requires management

 2. Conductor generates Assembly based on Cloud Consumer input

 3. Conductor saves Red Hat Enterprise Linux 6 Web Server Assembly CDL to DB under
Cloud Consumer account

refarch-feedback@redhat.com 59 www.redhat.com

Illustration 6-6: Define Assembly

mailto:refarch-feedback@redhat.com

 6.3.3 Deployable

In this step the Cloud Consumer defines the overall Deployable which consists of the
previously created Assemblies. The workflow is pictured next.

 1. Cloud Consumer specifies new Deployable

 a) 1 instance of load-balancer Assembly with name load-balancer01 and size small

 b) 1 instance of reverse-proxy Assembly with name reverse-proxy01 and size medium

 c) 1 instance of database Assembly with name database01 of size large

 d) 3 instances of app-store with name user-app-store01-03 of size medium

 2. Conductor generates Red Hat Enterprise Linux 6 Web Server Deployable based on
Cloud Consumer input

 3. Conductor saves the Red Hat Enterprise Linux 6 Web Server Deployable CDL to DB
under Cloud Consumer account

www.redhat.com 60 refarch-feedback@redhat.com

Illustration 6-7: Define Deployable

http://www.redhat.com/

 6.4 Deploy

The Cloud Consumer has planned and defined application deployment, inputting the
definitions in Red Hat CloudForms. This section details the process of making the application
live.

 6.4.1 Build

The build process is described in the following diagram and explains how a Template recipe is
made into a disk image. In our example, the Base OS is not built but provided by an Amazon
EC2 AMI.

 1. Cloud Consumer uploads JBoss bundle to JBoss ON

 2. JBoss ON pushes to Katello

 3. Cloud Consumer initiates build action from Conductor

 4. Conductor sends message to Image Factory to build image

 5. Image Factory receives request to build image

refarch-feedback@redhat.com 61 www.redhat.com

Illustration 6-8: Image Build

mailto:refarch-feedback@redhat.com

 6. Image Factory calls build process

 a) creates a temporary VM

 b) uses Katello as source to build minimal VM

 c) manipulates minimal VM to allow temporary access

 d) installs remaining requested packages/software

 e) installs software and updates configuration required to support cloud environment,
including any software needed for Management

 f) generates ICICLE

 g) undoes manipulation from c) that allowed temporary access

 7. Image Factory pushes image, ICICLE, template to Image Warehouse

 8. Image Warehouse/Image Factory prepares image for Cloud Provider and publishes

 a) Image Warehouse updates its DB

 b) Image Warehouse tells Image Factory image is ready at Cloud Provider

 c) Image Factor tells Conductor image is ready at Cloud Provider

 9. Conductor updates DB and Cloud Interface

For non-bootable images a VPATH12 install is done, and the relevant directory structures are
build into a disk image. In addition the meta-data required to mount and link the disk image in
much the same way alternatives are managed is recorded.

www.redhat.com 62 refarch-feedback@redhat.com

http://www.redhat.com/

 6.4.2 Instantiate

The steps to launch the on-line store deployable are pictured next. This is a detailed process
which details many steps.

1. Cloud Consumer indicates the start of a deployable in a particular pool

2. Conductor creates a condor request to start all 6 instances

• load-balancer01

• reverse-proxy01

• database01

• user-app-store01, user-app-store02, user-app-store03

3. Cloud Consumer is prompted for any missing parameters that are required

4. Condor accepts and queues request

refarch-feedback@redhat.com 63 www.redhat.com

Illustration 6-9: Deployable Launch Process

mailto:refarch-feedback@redhat.com

5. Condor attempts to match request using process outline in the workflow below. Condor
begins by interrogating Conductor to find available cloud provider.

6. If a match is successful, Condor informs Deltacloud to start instances and informs
Audrey to configure instances, providing one time credentials, UUID, and other host
identity information for each image. Condor also communicates with Katello's
Candlepin13 to reserve entitlements for each instance. This is requires three actions.

7. Deltacloud receives launch requests from condor and initiates instances.

8. Audrey requests CDL and ICICLE for each instance

www.redhat.com 64 refarch-feedback@redhat.com

Illustration 6-10: Condor Resource Matching

http://www.redhat.com/

9. As each instance is launched, a temporary secure connection is established using data
collected from the Cloud Consumer.

• Using the temporary secure connection, long-term identity and credentials are used
for authenticated connections.

• Required VPN connections are established.

10. Each instance provides its UUID to the Audrey configuration server, starting any
remaining configuration(s). The following actions are performed, however, not
necessarily in the order provided.

• All instances

◦ standard configuration including basic server and cloud specific details are
retrieved from configuration server

◦ standard configuration scripts are applied

◦ non-bootable images are mounted and integrated

• Load-balancer01 instance

◦ waits for web-IPs configuration script from configuration server

◦ web-IP configuration scripts are applied

◦ provides load balancer parameters to configuration server

◦ informs configuration server that configuration is complete

• reverse-proxy01 instance

◦ provides reverse proxy parameters to configuration server

◦ informs configuration server that configuration is complete

• database01 instance

◦ waits for CloudFS & database configuration scripts from configuration server

◦ CloudFS configuration script is applied

◦ database configuration script is applied

◦ provides database server parameters to configuration server

◦ informs configuration server that configuration is complete

refarch-feedback@redhat.com 65 www.redhat.com

mailto:refarch-feedback@redhat.com

• user-app-store01-03 instances

◦ each instance starts JBoss agents

◦ agents connect with JBoss ON

◦ each instance provides web-IP parameters to configuration server

◦ each instance waits for app-store configuration scripts which contain the
database, reverse-proxy, and load-balancer parameters

◦ each instance applies app-store configuration script

◦ informs configuration server that configuration is complete

• CloudFS Service

◦ waits for CloudFS parameters from configuration server

◦ applies CloudFS configuration

◦ informs configuration server that service is ready

• Audrey's configuration server

◦ waits for each instance to provide parameters, which it used to generate
coordinated application configuration, which is sent in the form of scripts to each
instance

◦ waits for configuration to complete from each instance, then prepares transmits
instance data to Conductor

11. Audrey Configuration Server transmits instance data to Conductor

 6.5 Manage

This section provides insight to the actions that can be performed on a deployment after
launch. The following activities are addressed:

• Updating

• Maintaining/Suspending

• Scaling

• Migrating

• Reporting

• Business Continuity

• Eliminating

www.redhat.com 66 refarch-feedback@redhat.com

http://www.redhat.com/

 6.5.1 Updating

There are multiple targets for updating in a deployment. The most common would be errata
and software updates. Others include updating the user provided application which may
require additional software, cloud service updates or new offerings, or changes in the
deployable's definition.

These updates can happen by three different methods controlled by user policy.

• live update – Katello/JBoss ON update running deployable

• restart of deployment – definition is updated, then redeployed

• hybrid – live update followed by an updated CDL which pushes and requires a restart

 6.5.2 Maintaining/Suspending

The Cloud Consumer may desire to temporarily have their application stop processing so that
modifications can be made, then allow processing to resume. This process follows the steps
below:

• stop all instances of the deployment

• retain snapshot from all instances

• perform maintenance/modification

• continue instances from snaphot

 6.5.3 Scaling
The Cloud Consumer may find that they wish to scale up or down their running deployment.
The options available include the following:

• update deployable definition to include more or larger instances, then restart entire
deployment

• using the same deployable definition, start more deployments

• update deployable definition, apply changes and condor starts/stops appropriately

• automatically increase or decrease number of instances in deployable based on
capacity measurement as monitored with Matahari

 6.5.4 Migrating
Once a deployment has been ruled unstable, the existing deployment is stopped and a
deployment using the same definition is started at a different cloud provider.

refarch-feedback@redhat.com 67 www.redhat.com

mailto:refarch-feedback@redhat.com

 6.5.5 Reporting
The categories of reporting relating to a running deployment include:

• application/instance/deployment status

• resource usage reports

• application specific reports (matahari agent dependent)

 6.5.6 Business Continuity
Whether the Cloud Consumer is using a cloud or not, the idea of guaranteeing that data is not
lost is a priority. While the methods have not been resolved as to using live snapshots, back up
and archival software, or data replication, each of the following is possible.

• Point in Time backup of image and data storage – restorable to previous location

• Migration of data from place to another

• Backup of data to a remote location, restorable to a different location

 6.5.7 Eliminating
When the Cloud Consumer determines that a deployment is no longer needed, any images at
the cloud provider can be discarded. The responsibility to confirm any required data has been
replicated to a location that allows at-will access is up to the Cloud Consumer.

www.redhat.com 68 refarch-feedback@redhat.com

http://www.redhat.com/

 7 Architectural Operational Flexibility
The example that was previously detailed in this paper was one possible method of
implementing a Cloud Consumer's need for an online store. Assuming no changes in the
requirements, this section discusses alternative considerations and possibilities to
accomplishing this goal. Additional considerations for cloud deployments not covered in the
example are also explored.

 7.1 Security, Multi-tenancy, Service Proxy
Red Hat CloudForms provides the capability for multiple Cloud Consumers to securely share a
cloud provider account or to simultaneously securely access multiple clouds as a single Cloud
Consumer. Access to a Red Hat Certified Cloud Provider Public Clouds may require the use of
proxies.

 7.2 Alternative Deployments
The example in this paper provided one deployable definition. There are a multitude of
variations including the following, but not limited to:

• using a cloud based on local virtualization (opposed to EC2)

• defining and building a base OS image

• using existing images to build new images

• do not stratify the software layers, i.e. define a single assembly per instance that has all
the needed software for that instance

• have images be pulled when needed (opposed to pre-placement)

• have assemblies execute in separate clouds

refarch-feedback@redhat.com 69 www.redhat.com

mailto:refarch-feedback@redhat.com

 8 Conclusion
In moving to the cloud or building new opportunities using a cloud infrastructure, the
ownership, control, cost visibility, and decisions are moving to the domain expert ('owner' of
the application). Red Hat CloudForms cloud infrastructure allows for better operational
efficiency and lower TCO for the creation and lifecycle of cloud application by enabling the
domain expert.

This paper provided a high-level overview of Red Hat's new CloudForms technologies. As part
of this overview several concepts were covered, such as a review of the NIST definition
standards, Red Hat's cloud strategy and a description, example and workflow of a CloudForms
deployment.

The key takeaway from this paper should be that Red Hat is providing the technologies to
make your cloud infrastructure flexible – flexibility means choices. This unique offering enables
you to take advantage of disparate cloud providers without the overhead of having to
customize the images for each environment. By providing a single user interface that interacts
with technologies such as Conductor, Image Factory, Condor, etc., Red Hat is lowering the
barriers to using the new cloud paradigm. If your enterprise developer knows that they can
write to one API – DeltaCloud API and then be able to take advantage of multiple cloud
providers, they are more likely to embrace the technology.

www.redhat.com 70 refarch-feedback@redhat.com

http://www.redhat.com/

The following diagram depicts an over view of the Red Hat CloudForms architecture.

refarch-feedback@redhat.com 71 www.redhat.com

Illustration 8-1: Red Hat CloudForms Architectural Overview

mailto:refarch-feedback@redhat.com

Appendix A: Contributors
We would like to thank the following individuals for their time and patience as we collaborated
on this process. This document would not have been possible without their many contributions.

Contributor Title Contribution

Vijay Trehan Director of Solutions Architectures Content, Diagrams, Reviews

Carl Trieloff
Technical Director, Software
Engineering

Vision, Content, Reviews

John Dunning Manager, Software Engineering Content, Reviews

Hugh Brock Manager, Software Engineering Content, Reviews

Chris Lalancette Senior Software Engineer Diagrams, Content

Scott Collier, RHCA Principal Software Engineer Content, Diagrams, Reviews

Bryan Kearney Manager, Software Engineering Content, Reviews

Charles Crouch Manager, Software Engineering Content, Reviews

Jeffery Darcy Principal Software Engineer Content, Diagrams

Dmitri Pal Manager, Software Engineering Content

Steven Dake Principal Software Engineer Content, Diagrams

Gordon Haff Senior Product Marketing Manager Content, Diagrams

Brett Thurber, RHCA Senior Software Engineer Reviews

John Herr, RHCA Senior Software Engineer Reviews

Table A: Contributors

www.redhat.com 72 refarch-feedback@redhat.com

http://www.redhat.com/

Appendix B: References

1 http://csrc.nist.gov/groups/SNS/cloud-computing/

2 http://collaborate.nist.gov/twiki-cloud-

computing/pub/CloudComputing/Documents/Draft-SP-800-145_cloud-

definition.pdf

3 http://collaborate.nist.gov/twiki-cloud-

computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_C

C_Reference_Architecture_v1_March_30_2011.pdf

4 http://www.aeolusproject.org

5 https://github.com/matahari/matahari/wiki

6 http://www.redhat.com/mrg/messaging/

7 http://hail.wiki.kernel.org/

8 http://www.redhat.com/identity_management/

9 http://freeipa.org/

10 http://fedoraproject.org/wiki/Features/SSSD

11 http://www.clusterlabs.org/wiki/Pacemaker

12 http://www.gnu.org/s/hello/manual/automake/VPATH-Builds.html

13 https://fedorahosted.org/candlepin/wiki/Overview

http://fedoraproject.org/wiki/Features/SSSD
http://freeipa.org/
http://www.redhat.com/identity_management/
http://hail.wiki.kernel.org/
https://github.com/matahari/matahari/wiki
http://www.aeolusproject.org/
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_Reference_Architecture_v1_March_30_2011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_Reference_Architecture_v1_March_30_2011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_Reference_Architecture_v1_March_30_2011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Documents/Draft-SP-800-145_cloud-definition.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Documents/Draft-SP-800-145_cloud-definition.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Documents/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/groups/SNS/cloud-computing/

	Appendix B: References
	 1 Executive Summary
	 2 Red Hat Cloud Strategy
	 2.1 CloudForms Cloud Engine
	 2.2 CloudForms Application Engine
	 2.3 CloudForms System Engine
	 2.4 CloudForms Cloud Services

	 3 Red Hat Cloud Solution Architecture
	 3.1 The Cloud as viewed by NIST
	 3.1.1 Definition of Cloud Computing
	 3.1.2 Essential Characteristics
	 3.1.3 Service Models
	 3.1.4 Deployment Models
	 3.1.5 Cloud Actors

	 3.2 Red Hat CloudForms and the NIST model
	 3.3 High Level Functional Areas
	 3.3.1 Cloud Interface
	 3.3.2 Content Provision Management
	 3.3.3 Application Description Generation
	 3.3.4 Image Lifecycle Management
	 3.3.5 Application Lifecycle Management
	 3.3.6 Functional Area Summary

	 4 Red Hat CloudForms Components
	 4.1 Cloud Interface
	 4.2 Content Provision Management
	 4.3 Application Description Generation
	 4.4 Image Lifecycle Management
	 4.4.1 Image Lifecycle - Standard
	 4.4.2 Image Lifecycle – Snapshot
	 4.4.3 Image Lifecycle – Katello Import

	 4.5 Application Lifecycle Management
	 4.6 Cloud Services
	 4.6.1 Monitoring
	 4.6.2 Managing
	 4.6.3 Messaging
	 4.6.4 Archival Storage
	 4.6.5 Replicated File System Storage
	 4.6.6 Cloud Id Management
	 4.6.7 High Availability

	 5 High Level Architectural Example
	 5.1 Overview
	 5.2 Defining Application Deployment
	 5.2.1 Define Templates
	 5.2.2 Define Assemblies
	 5.2.3 Define Deployable

	 6 Detailed Architectural Workflows
	 6.1 Functionality Mapping
	 6.2 Assumptions
	 6.3 Define
	 6.3.1 Templates
	 6.3.2 Assemblies
	 6.3.3 Deployable

	 6.4 Deploy
	 6.4.1 Build
	 6.4.2 Instantiate

	 6.5 Manage
	 6.5.1 Updating
	 6.5.2 Maintaining/Suspending
	 6.5.3 Scaling
	 6.5.4 Migrating
	 6.5.5 Reporting
	 6.5.6 Business Continuity
	 6.5.7 Eliminating

	 7 Architectural Operational Flexibility
	 7.1 Security, Multi-tenancy, Service Proxy
	 7.2 Alternative Deployments

	 8 Conclusion
	Appendix A: Contributors

