
The LPC43xx—NXP’s newest microcontroller family—has so many interesting new peripherals

that it’s difficult for an engineer not to succumb to the temptation to try a project that uses all

of them. Of course it is impossible to fully understand and utilize the LPC4350 in little more than

a month—which is the time I had for this project—so I’m sure I’ve only scratched the surface of

this NXP powerhouse. But I am very impressed by the LPC4350 and will continue to use it and

learn.

I started gaining confidence with the development tools by trying some of the examples

supplied with the starter kit, concentrating on the more interesting features that I will certainly

use on future projects: dual-core cooperation and SPIFI. Also SCT and SGPIO are very

interesting peripherals. So I decided to design a sample application to exercise the LPC4350

and its peripherals.

This sample application is a simple parking meter that works like those you find in Italy and

nearby countries.

Configurations

The application is currently made to be loaded and executed from SPIFI and external flash both

in debug and release mode; it isn’t ready to be executed from internal ram at the moment. To

automatically execute the application at boot up it is necessary to set the jumpers according to

the mode you will be using.

Installation

 1. Extract the zip archive into the LPC4350A_PDL directory, then you will find the Dparking

subdirectory. You will probably need to edit the include path directories according to

your Keil µVision 4 installation path; mine is C:\NXP\Keil, where I have the directories

ARM and UV4.

 2. Open M4_M0_ipc.uvmpw project group (located under Dparking\Parking\Keil) using

µVision

 3. Build the application in one of the supported configurations. First build the M0

application and then the M4 application. The example can be run on internal ram,

external flash, or external SPIFI flash memory. After a successful build load the

executable into the microcontroller’s internal ram, external flash, or external SPIFI flash

using the Flash submenu.

Cortex-M4/M0 Cooperating
Blue River Parking Meter

Massimo Manca, February, 2012

NXP White Paper 2

 4. Run the application and observe:

 �4 2 LEDs blinking: D9 is driven by the M4 core (at SysTick interrupt interval) and D10

by the M0 core every time it sends a heartbeat message to the M4.

 �4 The printer output through the serial port. To observe the output set the serial port

to 115200 baud, 8 data bits, 1 start bit, and 1 stop bit.

Application logic

The idea is that a driver parks his car in a parking space then goes to the nearest parking meter,

puts some money on it until it displays the desired expiry time; then he presses the print key,

takes the ticket, and places it on the dashboard of his car.

System resources used and assignment to the cores

The Cortex-M4 core handles the application logic and manages the 4 touch keys, the four LEDs

(via the PCA9502 I2C 8-bit I7O expander), the LCD display, and the real-time clock.

The Cortex-M0 core is dedicated to printer management using the RS232 on-board interface (in

the near future SCT and SGPIO will be used to interface a thermal printing head).

The cores communicates using interprocessor communication (IPC) mechanisms, minimizing the

data passed from M4 to M0 and providing a simple security mechanism.

Maximizing Dual-Core performance

Having two CPUs running two different applications means that the memory resources have

to be shared or divided between the two processors. To maximize the performance of each it

is necessary to understand how the architecture of the LPC4350. According to the UM10503

LPC43xx preliminary user manual (Rev. 1):

 To optimize the CPU performance, the ARM Cortex-M4 has three buses for Instruction

(code) (I) access, Data (D) access, and System (S) access. The I- and D-bus access memory

space is located below 0x2000 0000, the S-bus accesses the memory space staring from

0x2000 0000. When instructions and data are kept in separate memories, then code and

data accesses can be done in parallel in one cycle. When code and data are kept in the

same memory, then instructions that load or store data may take two cycles.

 On the LPC43xx, the ARM Cortex-M4 host CPU is used as the top-level system controller.

The LPC43xx also includes a second CPU, an ARM Cortex-M0. The ARM Cortex-M0 CPU is

controlled by the host CPU. The communication between both CPUs makes use of shared

memory space and interrupts.

 The multilayer AHB matrix enables all bus masters to access any embedded memory as

well as external SPI flash memory connected to the SPIFI interface. When two or more bus

masters try to access the same slave, a round robin arbitration scheme is used; each master

takes turns accessing the slave in circular order. The access length is determined by the

burst access length of the master. For the CPU, the burst size is 1, for GP-DMA, the burst

size can be up to 8. To optimize CPU performance, low-latency code should be stored in a

memory that is not accessed by other bus masters, especially masters that use a long burst

size.

NXP White Paper 3

Unlike the M4 the M0 has a single bus to access program and data memory areas, so to

maximize its performance it would access two dedicated memory regions. Of course it has to

access memory regions common to the M4 to conduct interprocessor communications.

For these reasons I designed this application to use external flash connected to the LPC43xx

through the SPIFI interface to contain the M4 application and the internal ram to contain and

execute the M0 application. You could also try using external flash instead SPIFI flash to store the

M4 application and compare the performance.

Security considerations

As a good master the M4 needs to know if the M0 is working correctly, and if not it has to

execute some recovery action to resolve the problem.

To try to meet these requirements I designed this type of interprocessor communications

between the M4 and M0 cores:

 1. At reset the M4 starts and initializes itself and its controlled peripherals, then loads the

M0 executable application in RAM memory and starts its execution;

 2. When the M0 processor starts it initializes itself and its controlled peripherals and signals

to the M4 that it is alive. It will signal to the M4 that is alive every 5,971 seconds as a

simple sort of heartbeat;

 3. The M4 monitors the M0 heartbeat, and if M0 doesn’t send an heartbeat message to the

M4 within 5,971 seconds the M4 will try to reset the M0;

 4. The MASTER_MBX_ALIVE mailbox is used only by the M0 to send the heartbeat to the

M4 so the direction is M0 → M4 (M0 is the producer, M4 the consumer).

Application organization

At reset the M4 initializes itself and the peripherals it controls. It then resets the M0 core, loads

its application in the internal ram space, and waits to receive the first heartbeat message.

M4 Application Execution Flow

After the M0 is running the M4 send to it the ParkingParams_t data structure containing some

parameters needed to print the tickets. The data structured is passed indirectly because the

parameter passed in the IPC message is its memory address.

Then M4 initializes the MVP module and enters an infinite loop where it waits for the next

interrupt and manages the associated events.

There are four sources that may interrupt M4 starting the MVP_Controller() function:

 1. GPIO IRQ handler: This is fired when the user presses a touch key button. The associated

action is the insertion in the event ring of the appropriate touch key code.

 2. RTC 1 second interrupt: This is fired every second; it is used to refresh the actual time

displayed on the LCD.

 3. SysTick IRQ handler: This is fired every 1 millisecond; it is used to generate simple timings

used by SysTimer module to implement simple timer and delay management. It is also

used to flash the D9 led at a frequency of 1 Hz.

 4. M0 IRQ handler: This is transparently handled by the IPC module included in the

LPC4350_PDLA library.

NXP White Paper 4

All the main application logic is handled by the MvpHandler module with MVP_Handler()

functions; basically it checks the event ring buffer and executes the appropriated actions.

M0 application execution flow

At reset M0 initialize the peripherals it will handle; sends the first heartbeat message to the M4;

and then enters an infinite loop where it checks the received messages from the M4, checks the

SLAVE_MBX_CMDS mailbox, and eventually executes the appropriate actions. It also manages

the heartbeat signaling mechanism, sending the heartbeat message to the M4 using the

MASTER_MBX_ALIVE mailbox.

In order to operate the M0 needs to receive two messages:

 PARAMS_TICKET_RCVD: M0 acquires the data of the ParkingParams_t data structure and

makes a local copy of them.

 PRINT_TICKET_RCVD: M0 acquires the data sent by the M4 related to the ticket it has

to print. M0 receives the memory address of a copy of the ParkingTicket_t data structure

handled by M4, then uses it to print the ticket formatted by itself.

The M4 may also send a WAKEUP_SENT message to the M0 using the SLAVE_MBX_CMDS as a

further security mechanism; the M0 then has to reply with the simple WAKEUP_RCVD command

to signal it is working. Actually this feature isn’t actively used.

Cortex-M4 and Cortex-M0 cooperation

One of the most interesting things demonstrated in this application is the cooperation between

the two Cortex cores. NXP designed the LPC43xx family to have a Cortex-M4 core acting as the

master CPU and a Cortex-M0 acting as a coprocessor to help the M4 in I/O and communications.

The two cores communicate via a system of mailboxes realized in RAM and with the help of two

interrupt vectors that are transparently managed by the IPC module included in LPC4350_PDL_A

library.

The application uses two mailboxes for IPC:

 The M4 writes to the SLAVE_MBX_CMDS mailbox on the M0 side the messages related to

the ticket to be printed; it also passes the data necessary to print the tickets. M0 answers

to these messages by writing to the MASTER_MBX_CMDS mailbox.

 The M0 periodically writes to the MASTER_MBX_ALIVE mailbox a simple sort of heartbeat

signal to inform M4 that it is alive. M4 monitors this message at regular intervals, and if it

doesn’t receive the message it resets the M0 core. M4 answers this message by writing to

the SLAVE_MBX_ALIVE mailbox.

All the messages the mailbox follow the same format. The interesting thing is that the format

provides a 32-bit message identifier and a 32-bit message data/parameter. So if the data sent is

longer than 32 bits will be passed the memory address of the real data

www.nxp.com

© 2012 NXP B.V.

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The

information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and

may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof

does not convey nor imply any license under patent or other industrial or intellectual property rights.

Date of release: February 2012

Published in the USA

User interface

I used the on-board LCD and two touch keys to build the user interface and the two remaining

touch buttons to test the application: one to simulate the coin insertion and the other to simulate

a car that leaves the parking area (presuming a sensor or a bar that detects it):

Button Meaning LED

1 T1 A car left the parking area LED0

2 T2 The user inserted a coin LED1

3 T3 The user cancelled the operation LED2

4 T4 The user requested to print the ticket LED3

 • T4 and T3 are the keys used for the user interface; T2 and T1 are the keys used to

simulate the insertion of a coin and a car that left the parking area.

 • The four LEDs are used to signal with a short blink that the user pressed the

corresponding button.

