When two worlds collide

The difficulties with testing enterprise applications are compounded

by the fact that many core systems span language and even platform
boundaries. For example, many major mainframe applications, running
COBOL, are presented to end-users by a front-end Java application
interface. So, what's the problem here. They're both well known languages
albeit with different histories. One, COBOL, is deemed to be rooted in the
past, while the other, JAVA, is currently stealing all the headlines.

lan Barrow is currently a programmer who works with JAVA, while Charlie Grant

works in COBOL in a financial company which has recently re-hosted to a Windows
environment. Derek Britton of Micro Focus referees an intriguing interview, as our two
contestants slug it out — discussing the merits, or otherwise, of both languages.

Derek: We are here to discuss what's
different, good, or complementary
about your two different languages. So

who would like to lead with a question?

lan: | would start by saying the big
difference that exists in our two working
environments is agility... the fact that

I use rich, productive tools. JAVA is a
very visual and intuitive test
environment... that's got to be

something you envy, Charlie.

Charlie: Not at all, | already have what
you have. I'm probably working on
the same IDE as you? My preference
is Eclipse but | also use Visual Studio.
It just happens that the Apps I'm
working with are COBOL-based. They
were moved off the mainframe with
very little disruption, and so now my
interface is totally visual, with all the
bells and whistles you have.

lan: So, do you have Intellisense?

Charlie: Yep. Intellisense, auto-

completion, background parse, red

squiggles, the full IDE. For COBOL, it's
the same as any other new language.
And anyway, COBOL was the original
write-once run-anywhere language and
had multi-platform support long before
Java was born.

lan: Well, JAVA has grown up it's
definitely now the programming

language of the future.

Charlie: Of course Java is superb
for building front ends.

lan: Yes, and the code runs anywhere,
it runs on tons of platforms, and it’s
high-quality code. We're talking about
the difference between object-oriented
versus the old-fashioned procedural
techniques of COBOL. Who really does
that anymore?

Charlie: Well that's a lot of claims. |
said JAVA is ideal for front ends but
that doesn’'t mean COBOL isn’t better
at running the back end. It always has
been. And as for the quality of code,

well, we've been churning out high-

quality enterprise systems for many

more years than you guys have.

lan: It's still a bloated, verbose language
though, admit that.

Derek: ...that is an argument that
is often levelled at COBOL, Charlie.

Charlie: Sure, many people think it's
a verbose language. That's probably
because we have billions of lines of
code out there. But it's only as wordy

as you need, and more to the pointitis

readable. And also, as it's syntax driven,

you can do a one-liner in a COBOL
program like DISPLAY "Hello World”
and it compiles and runs... interestingly
lan you could be up and running

with COBOL in a couple of hours flat:
because you can read it, understand it,
and use the same IDE to code it, there’s

nothing stopping you.

lan: Well it might be easy to pick up
but, look, you basically can't conceive
and implement Apps quickly using a
small team with COBOL. JAVA does

When two worlds collide

that and that can only be good for our
business users.

Charlie: What's really important for the
business is the value of the business
logic and data that already exists,
getting at that, and using it in different
ways. Who would choose JAVA to try to
build an entire new banking application

for example?

Derek: lan sorry to interrupt, | want
to move you on to another important
area, and that is testing for mobile and

cloud, anything to be said here?

lan: Well obviously JAVA will be on
mobile and in cloud. It's a mainstay
language there for development and test.

Charlie: You're right there, lan. Java is
designed for that and that's why COBOL
sticks to the back end business logic.
You can now leverage COBOL systems
wherever they might be running by
interfacing with new technologies like
web services, for example. So your

back-end core business system can be

accessed by a web portal, a mobile app,

or whatever.

lan: You make that sound so easy,
yet it can't be.

Charlie: OK, you're thinking ‘how

do | call COBOL from Java when a
mainframe App has all of these weird
data types | can't use from Java™? Well,
we can talk language-to-language.
You can create interfaces to COBOL
programs that Java developers can
use without worrying about what they

are calling.

Derek: That's an interesting
proposition. Just to give you both a
chance to finish this off, Id like to ask

what the future holds employment-

wise for developers such as yourselves.

lan: That's easy, | think the JAVA
developer has never been more

in demand.

Charlie: And that's actually true of
COBOL too - no lan it is! —really.

There's a lot of major enterprise
software projects out there. And | think
programmers and testers who have
COBOL and new programming language
skills such as C# or Java are well placed
to take a lead role in that.

lan: So who knows we might even

up working in the same team!

Charlie: Really, it's not so crazy as you
think. I know I'm collaborating more
now with other programming teams,
and using testing technology that
bridges COBOL and Java environments,
there are a lot of new composite
applications out there.

Derek: Well let's shake hands on that
thought please, gents. Sounds to me
like there is space for both languages
to flourish, and start to cooperate more,
both for developers and testers. Thank
you for giving your time to this debate.





