
When two worlds collide

by the fact that many core systems span language and even platform
boundaries. For example, many major mainframe applications, running
COBOL, are presented to end-users by a front-end Java application
interface. So, what’s the problem here. They’re both well known languages

past, while the other, JAVA, is currently stealing all the headlines.

Ian: I would start by saying the big

very visual and intuitive test

environment... that’s got to be

Charlie: Not at all, I already have what

you have. I’m probably working on

the same IDE as you? My preference

is Eclipse but I also use Visual Studio.

It just happens that the Apps I’m

working with are COBOL-based. They

very little disruption, and so now my

interface is totally visual, with all the

bells and whistles you have.

Charlie: Yep. Intellisense, auto-

completion, background parse, red

squiggles, the full IDE. For COBOL, it’s

the same as any other new language.

And anyway, COBOL was the original

write-once run-anywhere language and

had multi-platform support long before

Java was born.

language of the future.

Charlie: Of course Java is superb

for building front ends.

Charlie: Well that’s a lot of claims. I

said JAVA is ideal for front ends but

that doesn’t mean COBOL isn’t better

at running the back end. It always has

been. And as for the quality of code,

well, we’ve been churning out high-

quality enterprise systems for many

more years than you guys have.

Charlie: Sure, many people think it’s

a verbose language. That’s probably

because we have billions of lines of

code out there. But it’s only as wordy

as you need, and more to the point it is

readable. And also, as it’s syntax driven,

you can do a one-liner in a COBOL

program like DISPLAY “Hello World”

and it compiles and runs... interestingly

Ian you could be up and running

because you can read it, understand it,

and use the same IDE to code it, there’s

nothing stopping you.

Ian Barrow is currently a programmer who works with JAVA, while Charlie Grant

environment. Derek Britton of Micro Focus referees an intriguing interview, as our two
contestants slug it out – discussing the merits, or otherwise, of both languages.

p.11

business users.

Charlie: What’s really important for the

business is the value of the business

logic and data that already exists,

ways. Who would choose JAVA to try to

build an entire new banking application

for example?

Charlie: You’re right there, Ian. Java is

designed for that and that’s why COBOL

sticks to the back end business logic.

You can now leverage COBOL systems

wherever they might be running by

interfacing with new technologies like

web services, for example. So your

back-end core business system can be

accessed by a web portal, a mobile app,

or whatever.

Charlie: OK, you’re thinking ‘how

do I call COBOL from Java when a

mainframe App has all of these weird

data types I can’t use from Java’? Well,

we can talk language-to-language.

You can create interfaces to COBOL

programs that Java developers can

use without worrying about what they

are calling.

Derek: That’s an interesting

in demand.

Charlie: And that’s actually true of

COBOL too – no Ian it is! – really.

There’s a lot of major enterprise

software projects out there. And I think

programmers and testers who have

COBOL and new programming language

skills such as C# or Java are well placed

to take a lead role in that.

Charlie: Really, it’s not so crazy as you

think. I know I’m collaborating more

now with other programming teams,

and using testing technology that

bridges COBOL and Java environments,

there are a lot of new composite

applications out there.

Derek: Well let’s shake hands on that

When two worlds collide

